Skip to main content

In Situ Measurements on Suspended Nanoparticles with Visible Laser Light, Infrared Light, and X-Rays

  • Chapter
  • First Online:
Nanoparticles in the Water Cycle

Abstract

The presence of engineered nanoparticles (ENPs) in the water cycle is a subject of discussion among toxicologists, producers of nanomaterials, environmentalists, and politicians. At this stage the influence of ENPs on the environment is still minimal and there is also hardly any experience with measuring such artificial nanoparticles within the complex matrices of environmental samples. However, there is experience with measuring natural nanoparticles in environmental waters. An overview is given on measuring methods with the focus on in situ methods. They are aimed at studying particle size, particle size distribution, electric charge, or binding type of environmental contaminants on the nanoparticles. Examples of use are given for methods such as photon correlation spectroscopy, laser-induced breakdown detection, laser Doppler velocimetry, time-resolved laser fluorescence spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, and X-ray absorption spectroscopy with synchrotron radiation. The examples show the general strategies of such measurements, indicate typical problems and difficulties and demonstrate how such difficulties can be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Puebla RA, Garrido JJ, Aroca RF (2004) Surface-enhanced vibrational microspectroscopy of fulvic acid micelles. Analytical Chem 76: 7118–7125.

    Article  CAS  Google Scholar 

  • Barkleit A, Moll, H, Bernhard, G (2008) Interaction of uranium(VI) with lipopolysaccharide. Dalton Transact 21: 2879–2886.

    Article  Google Scholar 

  • Boughriet A, Cordier C, Deram L, Ouddane B, Chamley H, Wartel M (1995) Coprecipitation/accumulation/distribution of manganese and iron, and electrochemical characteristics of Mn in calcareous seawater. Fresenius J Anal Chem 352: 341–353.

    Article  CAS  Google Scholar 

  • Buffle J, Perret D, Newman M (1992) The use of filtration and ultrafiltration for size fractionation of aquatic particels, colloids and macromolecules. In: Buffle J, van Leeuwen HP (eds.) Environmental Particles. Vol. 1 Environmental Analytical and Physical Chemistry Series (IUPAC), Lewis Publishers, Boca Raton, pp. 171–230.

    Google Scholar 

  • Buffle J, van Leeuwen HP (1992) Environmental Particles. Vol. 1 Environmental Analytical and Physical Chemistry Series (IUPAC), Lewis Publishers, Boca Raton.

    Google Scholar 

  • Buffle J, van Leeuwen HP (1993) Environmental Particles. Vol. 2. Environmental Analytical and Physical Chemistry Series (IUPAC), Lewis Publishers, Boca Raton.

    Google Scholar 

  • Buffle J, Leppard GG (1995) Characterization of Aquatic Colloids and Macromolecules. 2. Key Role of Physical Structures on Analytical Results. Environ Sci Technol 29: 2176–2184.

    Article  CAS  Google Scholar 

  • Bundschuh T, Hauser W, Kim JI, Knopp R, Scherbaum FJ (2001) Determination of colloid size by 2-D optical detection of laser induced plasma. Coll Surf A: Physicochem Eng Asp 180: 285–293.

    Article  CAS  Google Scholar 

  • Charlet L, Manceau A (1993) Structure, formation, and reactivity of hydrous oxide particles: insights from x-ray absorption spectroscopy. In: Buffle J, van Leeuwen HP (eds.) Environmental Particles. Vol. 2. Environmental Analytical and Physical Chemistry Series (IUPAC). Lewis Publishers, Boca Raton, pp. 117–164.

    Google Scholar 

  • Cheng JX, Jia YK, Zheng G, Xie XS (2002) Laser-scanning coherent anti-stokes Raman scattering microscopy and applications to cell biology. Biophys J 83: 502–509.

    Article  CAS  Google Scholar 

  • Ding M, De Jong BHWS, Roosendaal SJ, Vredenberg A (2000) XPS studies on the electronic structure of bonding between solid and solutes: adsorption of arsenate, chromate, phosphate, Pb2+, and Zn2+ ions on amorphous black ferric oxyhydroxide. Geochim Cosmochim Acta 64: 1209–1219.

    Article  CAS  Google Scholar 

  • Druet SAJ, Teran JPE (1981) CARS spectroscopy. Prog Quantum Electronics 7: 1–72.

    Article  CAS  Google Scholar 

  • Filella M, Zhang J, Newman ME, Buffle J (1997) Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations. Coll Surf A: Physicochem Eng Asp 120: 27–46.

    Article  CAS  Google Scholar 

  • Foerstendorf H. Heim K (2009) Spectroscopic identification of ternary carbonate complexes upon U(VI) sorption onto ferrihydrite. Geochim Cosmochim Acta 73: A 386.

    Google Scholar 

  • Ford NC (1985) Light scattering apparatus. In: Pecora, R (ed.) Dynamic Light Scattering: Applications of PCS. Plenum Press, New York, pp. 7–58.

    Chapter  Google Scholar 

  • Fourest B, Hakem N, Guillaumont R (1994) Characterization of colloids by measurement of their mobilities. Radiochim Acta 66/67: 173–179.

    CAS  Google Scholar 

  • Frimmel F, von der Kammer F, Flemming KC (2007) Colloidal Transport in Porous Media. Springer-Verlag, Berlin, Heidelberg.

    Book  Google Scholar 

  • Gaillard JF (2007) Probing environmental colloids and particles with x-rays. In: Wilkinson KJ, Lead JR (eds.) Environmental Colloids and Particles. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems. Wiley Interscience, New York, pp. 613–666.

    Google Scholar 

  • Geipel G, Brachmann A, Brendler V, Bernhard G Nitsche H (1996) Uranium(VI) sulfate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim Acta 75: 199–204.

    CAS  Google Scholar 

  • George GN, Pickering IJ (1995) EXAFSPAK, A suite of computer programs for analysis of X-ray absorption spectra. Stanford Synchrotron Radiation Laboratory, Stanford, USA.

    Google Scholar 

  • George S, Steinberg SM, Hodge V (2000) The concentration, apparent molecular weight and chemical reactivity of silica from groundwater in Southern Nevada. Chemosphere 40: 57–63.

    Article  CAS  Google Scholar 

  • Grabowski EE, Morrison ID (1983) Particle size distribution from analysis of quasi-elastic light-scattering data. In: Dahneke, BE (ed.) Measurement of Suspended Particles by Quasi-Elastic Light Scattering. Wiley-Interscience, New York, pp. 199–236.

    Google Scholar 

  • Hedderman TG, Keogh SM, Chambers G, Byrne HJ (2006) In-depth study into the interaction of single walled carbon nanotubes with anthracene and p-terphenyl. J Phys Chem B 110: 3895–3901.

    Article  CAS  Google Scholar 

  • Helmbrecht C, Niessner R, Haisch C (2007) Photophoretic velocimetry for colloid characterization and separation in a cross-flow setup. Anal Chem 79: 7097–7103.

    Article  CAS  Google Scholar 

  • Johnston CT, Sposito G, Earl WL (1993) Surface spectroscopy of environmental particles by Fourier-transform infrared and nuclear magnetic resonance spectroscopy. In: Buffle J, van Leeuwen HP (eds.) Environmental Particles. Vol. 2. Environmental Analytical and Physical Chemistry Series (IUPAC), Lewis Publishers, Boca Raton, pp. 1–36.

    Google Scholar 

  • Jones MN, Bryan ND (1998) Colloidal properties of humic substances. Adv Coll Interface Sci 78: 1–48.

    Article  CAS  Google Scholar 

  • Kaplan DI, Hunter DB, Bertsch PM, Bajt S, Adriano DC (1994) Application of synchrotron x-ray fluorescence spectroscopy and energy dispersive x-ray analysis to identify contaminant metals on groundwater colloids. Environ Sci Technol 28: 1186–1189.

    Article  CAS  Google Scholar 

  • Kim JI, Walther C (2007) Laser-induced breakdown detection. In: Wilkinson KJ, Lead JR (eds.) Environmental Colloids and Particles. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems. Wiley Interscience, New York, pp. 555–612.

    Google Scholar 

  • Klein, T., Niessner, R. (1998) Characterization of heavy-metal-containing seepage water colloids by flow FFF, ultrafiltration, ELISA and AAS. Mikrochim Acta 129: 47–55.

    Article  CAS  Google Scholar 

  • Knollenberg RG, Veal DL (1992) Optical monitors, counters, and spectrometers: performance characterization, comparison, and use. J IES 35: 64–81.

    CAS  Google Scholar 

  • Koningsberger D E, Prins R (1988) X-ray absorption: principles, applications, techniques for EXAFS, SEXAFS, and XANES. Wiley-Interscience, New York.

    Google Scholar 

  • Lead, J R, Davison W, Hamilton-Taylor J, Buffle J (1997) Characterizing colloidal material in natural waters. Aquatic Geochem 3: 213–232.

    Article  CAS  Google Scholar 

  • Lyven B, Hassellöv M, Turner DR, Haraldsson C, Andersson K (2003) Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS. Geochim Cosmochim Acta 67: 3791–3802.

    Article  CAS  Google Scholar 

  • Matz W, Schell N, Bernhard G, Prokert F, Reich T, ClauĂźner J, Oehme W, Schlenk R, Dienel S, Funke H, Eichhorn F, Betzl M, Pröhl D, Strauch U, HĂĽttig G, Krug H, Neumann W, Brendler V, Reichel P, Denecke MA, Nitsche H (1999) ROBL – a CRG beamline for radiochemistry and material research at the ESFR. J Synchrotron Rad 6: 1076–1085.

    Article  CAS  Google Scholar 

  • Moll H, Zänker H, Richter W, Brendler V, Reich T, Hennig C, RoĂźberg A, Funke H, Kluge A (2000) XAS Study of Acid Rock Drainage Samples From an Abandoned Zn-Pb-Ag Mine at Freiberg, Germany. 2nd Euroconference and NEA Workshop on Speciation, Techniques, and Facilities for Radioactive Materials at Synchrotron Light Sources. Actinide-XAS-2000, Grenoble, France.

    Google Scholar 

  • MĂĽller K, Foerstendorf H, Tsushima S, Brendler V, Bernhard G (2009) Direct spectroscopic characterization of aqueous Actinyl(VI) species: a comparative study of Np and U. J Phys Chem A 113: 6626–6632.

    Article  Google Scholar 

  • Namjesnik-Dejanovic K, Maurice PA (1997) Atomic force microscopy of soil and stream fulvic acids. Coll Surf A: Physicochem Eng Asp 120: 77–86.

    Article  CAS  Google Scholar 

  • Nomizu T, Goto K, Mizuike A (1988) Electron microscopy of nanometer particles in freshwater. Anal Chem 60: 2653–2656.

    Article  CAS  Google Scholar 

  • Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW (2000) Negative pH and extremely acidic mine waters from iron mountain, California. Environ Sci Technol 34: 254–258.

    Article  CAS  Google Scholar 

  • Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak production association, Russia. Science 314: 638–641.

    Article  CAS  Google Scholar 

  • Opel K, Zänker H, Bernhard G (2006) Characterization of the colloidal inventory of mineral waters and physiological salines by laser-induced breakdown detection (LIBD). Report FZR-443, Forschungszentrum Rossendorf, p. 19.

    Google Scholar 

  • Opel K, WeiĂź S, HĂĽbener S, Zänker H, Bernhard G (2007) Study of the solubility of amorphous and crystalline uranium dioxide by combined spectroscopic methods. Radiochim Acta 95: 143–149.

    Article  CAS  Google Scholar 

  • Plaschke M, Schäfer T, Bundschuh T, Ngo Manh T, Knopp R, Geckeis H, Kim, JI (2001) Size characterization of Bentonite colloids by different methods. Anal Chem 73: 4338–4347.

    Article  CAS  Google Scholar 

  • Plaschke M, Römer J, Kim, JI (2002) Characterization of Gorleben groundwater colloids by atomic force microscopy, Environ Sci Technol 36: 4483–4488.

    Article  CAS  Google Scholar 

  • Prestel H, Niessner R, Panne U (2006) Increasing the sensitivity of asymmetrical flow field-flow fractionation: slot outlet technique. Anal Chem 78: 6664–6669.

    Article  CAS  Google Scholar 

  • Provencher W (1982) A constrained regularization method for inverting data presented by linear algebraic or integral equations. Comput Phys Commun 27: 213–227.

    Article  Google Scholar 

  • Riley J (2005) Charge in colloidal systems. In: Cosgrove T (ed.) Colloid Science. Principles, Methods and Applications. Blackwell Publishing, Oxford, pp. 14–35.

    Google Scholar 

  • Rossberg A, Ulrich KU, Weiss S, Tsushima S, Hiemstra T, Scheinostt AC (2009) Identification of Uranyl Surface Complexes an Ferrihydrite: Advanced EXAFS Data Analysis and CD-MUSIC Modeling. Environ Sci Technol 43: 1400–1406.

    Article  CAS  Google Scholar 

  • Scherbaum FJ, Knopp R, Kim JI (1996) Counting of particles in aqueous solutions by laser-induced photoacoustic breakdown detection. Appl Phys B 63: 299–306.

    CAS  Google Scholar 

  • Schierz A, Zänker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157: 1088–1094.

    Article  CAS  Google Scholar 

  • Schmid T, Messmer A, Yeo BS, Zhang WH, Zenobi R (2008) Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates. Anal Bioanal Chem 391: 1907–1916.

    Article  CAS  Google Scholar 

  • Schurtenberger P, Newman ME (1993) Characterization of biological and environmental particles using static and dynamic light scattering. In: Buffle J, van Leeuwen HP (eds.) Environmental Particles. Vol. 2. Environmental Analytical and Physical Chemistry Series (IUPAC), Lewis Publishers, Boca Raton, pp. 37–115.

    Google Scholar 

  • Stock RS, Ray WH (1985) Interpretation of photon correlation spectroscopy data: a comparison of analysis methods. J Polym Sci Polym Phys Ed 23: 1393–1447.

    Article  CAS  Google Scholar 

  • Thang NM, Knopp R, Geckeis H, Kim JI, Beck HP (2000) Detection of nanocolloids with flow-field flow fractionation and laser-induced breakdown detection. Anal Chem 72: 1–5.

    Article  CAS  Google Scholar 

  • Thieme J, McNulty I, Vogt S, Paterson D (2007) X-ray spectromicroscopy – A tool for environmental sciences. Environ Sci Technol 41: 6885–6889.

    Article  CAS  Google Scholar 

  • Tscharnuter W (2000) Photon correlation spectroscopy in particle sizing. In: Meyers RA (ed.) Encyclopedia of Analytical Chemistry. John Wiley & Sons, Chichester, pp. 5469–5485.

    Google Scholar 

  • Ulrich KU, Rossberg A, Foerstendorf H, Zänker H, Scheinost AC (2006) Molecular characterization of uranium(VI) sorption complexes on iron(III)-rich acid mine water colloids. Geochim Cosmochim Acta 70: 5469–5487.

    Article  CAS  Google Scholar 

  • von der Kammer F, Baborowski M, Friese K (2005) Application of a high-performance liquid chromatography fluorescence detector as a nephelometric turbidity detector following Field-Flow Fractionation to analyse size distributions of environmental colloids. J Chromatography A 1100: 81–89.

    Article  Google Scholar 

  • von Wandruszka R, Schimpf M, Hill M, Engebretson R (1999) Characterization of humic acid size fractions by SEC and MALS. Organic Geochemistry 30: 229–235.

    Article  Google Scholar 

  • Walther C, Cho HR, Fanghänel T (2004) Measuring multimodal size distribution of aquatic colloids at trace concentrations. Appl Phys Lett 85: 6329–6331.

    Article  CAS  Google Scholar 

  • Walther C, Buchner S, Filella M, Chanudet V (2006) Probing particle size distributions in natural surface waters from 15 nm to 2 μm by a combination of LIBD and single-particle counting. J Colloid Interface Sci 301: 532–537.

    Article  CAS  Google Scholar 

  • Weiner BB (1984) Particle sizing using photon correlation spectroscopy. In: Barth, HG (ed.) Modern Methods of Particle Size Analysis. John Wiley & Sons, New York, pp. 93–116.

    Google Scholar 

  • Wilkinson KJ, Lead JR (2007) Environmental Colloids and Particles. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems. Series Editors: Buffle J, van Leeuwen HP, Wiley Interscience, New York.

    Google Scholar 

  • Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Multiple-scattering calculations of x-ray absorption spectra. Phys Rev B 52: 2995–3008.

    Article  CAS  Google Scholar 

  • Zänker H, Moll H, Richter W, Brendler V, Hennig C, Reich T, Kluge A, HĂĽttig G (2002) The colloid chemistry of acid rock drainage solution from an abandoned Zn-Pb-Ag mine. Appl Geochem 17: 633–648.

    Article  Google Scholar 

  • Zänker H, Richter W, HĂĽttig G (2003) Scavenging and immobilization of trace contaminants by colloids in the waters of abandoned ore mines. Coll Surf A: Physicochem Eng Asp 217: 21–31.

    Article  Google Scholar 

  • Zänker H, HĂĽttig G, Arnold T, Nitsche H (2006) Formation of iron-containing colloids by the weathering of Phyllite. Aquatic Geochem 12: 299–325.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Zänker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zänker, H. (2010). In Situ Measurements on Suspended Nanoparticles with Visible Laser Light, Infrared Light, and X-Rays. In: Frimmel, F., Niessner, R. (eds) Nanoparticles in the Water Cycle. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10318-6_8

Download citation

Publish with us

Policies and ethics