Skip to main content

Nanoparticles: Interaction with Microorganisms

  • Chapter
  • First Online:
Nanoparticles in the Water Cycle

Abstract

Recent lab experiments have shown the adverse effects of nanoparticles on microorganisms. However, due to various set-ups and test designs with different methods of toxicity measurement a direct comparison of the results presented is questionable. The toxicity of the nanoparticles depends on their chemical composition and can be influenced by factors such as size, shape and charge and by components of the suspension leading to aggregation. It is attractive to assume that there are toxic effects of nanoparticles in environmental systems which differ significantly from those obtained in idealised model suspensions and for bulk material. Although, the exact mode of bactericidal action has not been well understood, the amount of adhered nanoparticles, the dissolution of metal ions and the production of reactive oxygen species seem to be relevant aspects. Hence, the various effects leading to the bactericidal action should be further investigated to exclude risks for the environment caused by insufficient knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams LK, Lyon DY, Alvares PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 20: 3527–3532.

    Article  Google Scholar 

  • Arain S (2006) Microrespirometry with Sensor Equipped Microtiter plates. Dissertation, Regensburg.

    Google Scholar 

  • Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42: 6730–6735.

    Article  CAS  Google Scholar 

  • Bennat C, Müller-Goymann CC (2000) Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. J Cosmetic Sci 22: 271–283.

    Article  CAS  Google Scholar 

  • Berney M, Weilenmann HU, Ihssen J, Bassin C, Egli T (2006) Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microbiol 72: 2586–2593.

    Article  CAS  Google Scholar 

  • Brayner R, Ferrai-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6: 866–870.

    Article  CAS  Google Scholar 

  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction os silver nanoparticles: size dependent generation of reactive oxygen species. J Phys Chem B 112: 13608–13619.

    Article  CAS  Google Scholar 

  • Cho M, Chung H, Choi W, Yoon J (2004) Linear correlation between inactivation of E. Coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38: 1069–1077.

    Article  CAS  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42: 4583–4588.

    Article  CAS  Google Scholar 

  • Choi O, Deng KK, Kim NJ, Ross L Jr., Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42: 3066–3074.

    Article  CAS  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422: 37–44.

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (1997) The Iron Oxides. VCH Publishers, Weinheim.

    Google Scholar 

  • De la Fuente J, Berry CC, Riehle MO, Curtis ASG (2006) Nanoparticle targeting at cells. Langmuir 22: 3286–3293.

    Article  Google Scholar 

  • Dillen K, Bridts C, van der Veken P, Cos P, Vandervoort J, Augustyns K, Stevens W, Ludwig A (2008) Adhesion of PLGA or Eudragit/PLGA nanoparticles to Staphylococcus and Pseudomonas. Int J Pharm 349: 234–240.

    Article  CAS  Google Scholar 

  • Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77: 3–5.

    Article  CAS  Google Scholar 

  • Eckelman MJ, Graedel TE (2007) Silver emissions and their environmental impacts: a multilevel assessment. Environ Sci Technol 41: 6283–6289.

    Article  CAS  Google Scholar 

  • Fent K (1998) Ökotoxikologie, Thieme, Stuttgart

    Google Scholar 

  • Ghosh S, Mashayekhi H, Pan B, Bhowmik P, Xing B (2008) Colloidal behavior of aluminium oxide nanoparticles as affected by pH and natural organic matter. Langmuir 24: 12385–12391.

    Article  CAS  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles with cationic and anionic side chains. Bioconjugate Chem 15: 897–900.

    Article  CAS  Google Scholar 

  • Guillemot G, Despax B, Raynaud P, Zanna S, Marcus P, Schmitz P, Mercier-Bonin M (2008) Plasma deposition of silver nanoparticles onto stainless steel for the prevention of fungal biofilms: a case study on Saccharomyces cerevisiae. Plasma Process Polym 5: 228–238.

    Article  CAS  Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Brit J Pharmacol 142: 231–255.

    Article  CAS  Google Scholar 

  • Helland A, Scheringer M, Siegrist M, Kastenholz HG, Wiek A, Scholz RW (2008) Risk assessment of engineered nanomaterials: a survey of industrial approaches. Environ Sci Technol 42: 640–646.

    Article  CAS  Google Scholar 

  • Huang L, Li DQ, Lin YL, Wei M, Evans DG, Duan X (2005) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99: 986–993.

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles on algae and daphnia. Environ Sci Pollut Res 13: 225–232.

    Article  CAS  Google Scholar 

  • Hwang ET, Lee JH, Chae Yj, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4: 746–750.

    Article  CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279: 71–76.

    Article  CAS  Google Scholar 

  • Kai Y, Komazawa Y, Miyajima A, Miyata N, Yamakoshi Y (2003) Fullerene as a novel photoinduced antibiotic. Fullerenes, Nanotubes and Carbon Nanostructures 11: 79–87.

    Article  CAS  Google Scholar 

  • Kang S, Herberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter. Langmuir 24: 6409–6413.

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem 27: 1825–1851.

    Article  CAS  Google Scholar 

  • Kleijn JM, van Leeuwen HP (2000) Chapter 2: Electrostatic and electrodynamic properties of biological interfaces. In: Bazkin A, Norde W (eds.) Physical Chemistry of Biological Interfaces. Marcel Dekker, New York.

    Google Scholar 

  • Koper OP, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov P, Bohra L (2002) Nanoscale powders and formulations with biocidal activity toward spores vegetative cells of Bacillus species, viruses and toxins. Curr Microbiol 44: 49–55.

    Article  CAS  Google Scholar 

  • Krug HF (2005) Impact of nanotechnological developments on the environment. Z. Umweltchem. Ökotox.

    Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero valent iron nanoparticles on Escherichia coli. Envron Sci Technol 42: 4927–4933.

    Article  CAS  Google Scholar 

  • Lekas D (2005) Analysis of nanotechnology from an industrial ecology perspective. Part II: substance flow analysis of carbon nanotubes. Project on emerging nanotechnologies report.

    Google Scholar 

  • Limbach LK, Li Y, Grass RK, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39: 9370–9376.

    Article  CAS  Google Scholar 

  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytiic activity on oxidative stress. Envron Sci Technol 41: 4158–4163.

    Article  CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QH, Yu WY, Sun H, Tam KH, Chiu JF, Che CM (2006) Protemic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5: 916–924.

    Article  CAS  Google Scholar 

  • Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of Fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40: 4360–4366.

    Article  CAS  Google Scholar 

  • Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughes JB (2005) Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ Tox Chem 24: 2757–2762.

    Article  CAS  Google Scholar 

  • Lyon DY, Thill A, Rose J, Alvarez PJJ (2007) Ecotoxicological impacts of nanomaterials. In: Wiesner MR, Bottero JY (eds.) Environmental Nanotechnology: Applications and Impacts of Nanomaterials. McGraw Hill, New York.

    Google Scholar 

  • Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bactericide. Adv Func Mater 15: 1708–1715.

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bacteriocidal effect of silver nanoparticles. Nanotechnology 16: 2346–2353.

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42: 4447–4453.

    Article  CAS  Google Scholar 

  • Müller RH (1996) Zetapotential und Partikelladung in der Laborpraxis. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart.

    Google Scholar 

  • Nam YJ, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400: 396–414.

    Article  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42: 8959–8964.

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potentials of materials at the nanolevel. Science 311: 622–627.

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150: 5–22.

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle. A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73: 1712–1720.

    Article  CAS  Google Scholar 

  • Pitkethly MJ (2004) Nanomaterials – the driving force. Mat Today 7 S1: 20–29.

    Article  Google Scholar 

  • Rincon AG, Pulgarin C (2004) Effect of pH, inorganic ions, organic matter and H2O2 on E. coli photocatalytic inactivation by TiO2 Implications in solar water disinfection. Appl Catal B: Environ 51: 283–302.

    Article  CAS  Google Scholar 

  • Rincon AG, Pulgarin C (2007) Absence of E. coli regrowth after Fe3+ and TiO2 solar photoassisted disinfection of water in CPC solar photoreactor. Catal Today 124: 204–214.

    Article  CAS  Google Scholar 

  • Ruiz-Laguna J, Prieto-Alamo MJ, Pueyo C (2000) Oxidative mutagenesis in Escherichia coli strains lacking ROS-scavenging enzymes and/or 8-Oxoguanine defenses. Environ Mol Mutagen 35: 22–30.

    Article  CAS  Google Scholar 

  • Schmied K, Riediker M (2008) Use of nanoparticles in swiss industry: a targeted survey. Environ Sci Technol 42: 2253–2260.

    Article  Google Scholar 

  • Silvestry-Rodriguez N, Bright KR, Slack DC, Uhlmann DR, Gerba CF (2008) Silver as a residual disinfectant to prevent biofilm formation in water distribution systems. Appl Environ Microbiol 74: 1639–1641.

    Article  CAS  Google Scholar 

  • Singh MP (2006) Rapid test for distinguishing membrane active antibacterial agents. J Microbiol Meth 67: 125–130.

    Article  CAS  Google Scholar 

  • Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM (2008) Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24: 7457–7464.

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275: 177–182.

    Article  CAS  Google Scholar 

  • Stoimenov PK, Klabunde KJ (2005) Nanotechnology in biological agent decontamination.. In: Kumar CSSR, Hormes J, Leuschner C (eds.) Nanofabrication Towards Biomedical Applications. Wiley-VCH, Weinheim.

    Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18: 6679–6686.

    Article  CAS  Google Scholar 

  • Sun YP, Li XQ, Zhang WX, Wang HP (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloid Surf A: Physicochem Eng Asp 308: 60–66.

    Article  CAS  Google Scholar 

  • Ter Haseborg E, Frimmel FH (2007) Impact of selected pollutants in synthetic industrial wastewater on nitrifying biofilms in fixed bed biofilmreactors – visualized with fluorescence in situ hybridization. Anal Lett 40: 1473–1486.

    Article  CAS  Google Scholar 

  • Thierry B, Majewski P, Ngothai Y, Shi Y (2007) Preparation of monodisperse functionalised superparamagnetic nanoparticles. Int J Nanotechnol 4: 523–530.

    Article  CAS  Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 Nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40: 6151–6156.

    Article  CAS  Google Scholar 

  • Tortora GJ, Funke BR, Case CL (Eds.) (1989) Microbiology: An Introduction. Benjamin/ Cummings Publishing Company, Redwood City, Chapter 6.

    Google Scholar 

  • Van Hoecke K, Schamphelaere KAC, van der Meeren P, Lucas S, Janssen CR (2008) Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata – importance of surface area. Environ Toxicol Chem 27: 1948–1957.

    Article  Google Scholar 

  • Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in anti-microbial materials and their characterization. Analyst 133: 835–845.

    Article  CAS  Google Scholar 

  • Westerhoff P, Zhang Y, Crittenden J, Chen Y (2008) In: Grassian VH (eds.) Nanoscience and nanotechnology. Wiley, New Jersey, Chapter 4.

    Google Scholar 

  • Williams DN, Ehrman SH, Pulliam Holoman TR (2006) Evaluation of the microbial growth response to inorganic nanoparticles. J Nanobiotechnol 4: 3.

    Article  Google Scholar 

  • Woyke A (2007) “Nanotechnology” as a new key technology? – an attempt of a historical and systematical comparison with other technologies. J Gen Philos Sci 38: 329–345.

    Article  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles. J Nanopart Res 9: 479–489.

    Article  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5: 323–332.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Luis Tercero for the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz H. Frimmel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwegmann, H., Frimmel, F.H. (2010). Nanoparticles: Interaction with Microorganisms. In: Frimmel, F., Niessner, R. (eds) Nanoparticles in the Water Cycle. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10318-6_10

Download citation

Publish with us

Policies and ethics