Skip to main content

Strategies for Adaptation to Waterlogging and Hypoxia in Nitrogen Fixing Nodules of Legumes

  • Chapter
  • First Online:
Waterlogging Signalling and Tolerance in Plants

Abstract

Symbiotic nitrogen fixation between legumes and rhizobia bacteria occurs in a microaerobic environment within a specialized organ, the root nodule. The fixation of dinitrogen requires a considerable energy input and a high respiratory rate, but the fundamental nitrogen fixation enzyme, nitrogenase, is inactivated by free oxygen. Because of this apparent conundrum, the diffusion of oxygen into the nodule infection zone is exquisitely regulated in response to multiple environmental cues, and becomes sensitive to alterations in the external rhizosphere oxygen tension. As a result, most legumes are sensitive to waterlogging, showing reductions in nodulation and productivity in flooded soils. Nevertheless, certain legumes have evolved developmental strategies to modulate the pathway of oxygen diffusion to the nodule, the patterns of nodule formation on roots and stems, and altered pathways of bacterial invasion to adapt to flooding conditions. In the present chapter, the regulation of oxygen diffusion and adaptations to waterlogged conditions by nitrogen fixing nodules of flooding-sensitive and flooding-tolerant legumes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylate

GA:

Gibberellic acid

IT:

Infection thread

K m :

Michaelis constant

kPa:

kilopascal

LRB:

Lateral root boundary

Oi :

Free oxygen concentration within the infected cells

PIP:

Plasma membrane intrinsic protein

P f :

Osmotic water permeability

RHC:

Root hair curling

ROS:

Reactive oxygen species

TIP:

Tonoplast intrinsic protein

References

  • Alazard D (1985) Stem and root nodulation in Aeschynomene spp. Appl Environ Microbiol 50:732–734

    CAS  PubMed  Google Scholar 

  • Allen ON, Allen EK (1981) The Leguminosae: a source book of characteristics, uses, and nodulation. The University of Wisconsin Press, Madison, WI, USA

    Google Scholar 

  • Arrese-Igor C, Royuela M, de Lorenzo C, de Felipe MR, Aparicio-Tejo PM (1993) Effect of low rhizosphere oxygen on growth, nitrogen fixation and nodule morphology in lucerne. Physiol Plant 89:55–63

    Article  CAS  Google Scholar 

  • Atkins CA, Hunt S, Layzell DB (1993) Gaseous diffusive properties of soybean nodules cultured with non-ambient pO2. Physiol Plant 87:89–95

    Article  Google Scholar 

  • Bacanamwo M, Purcell LC (1999a) Soybean dry matter and N accumulation responses to flooding stress, N sources and hypoxia. J Exp Bot 50:689–696

    Article  CAS  Google Scholar 

  • Bacanamwo M, Purcell LC (1999b) Soybean root morphological and anatomical traits associated with acclimation to flooding. Crop Sci 39:143–149

    Article  Google Scholar 

  • Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Batzli JM, Dawson JO (1999) Development of flood-induced nodule lenticels on red alder during the restoration of nitrogenase activity. Can J Bot 77:1373–1377

    Article  CAS  Google Scholar 

  • Becker M, Ladha JK, Ali M (1995) Green manure technology: potential, usage, and limitations. A case study for lowland rice. Plant Soil 174:181–194

    Article  CAS  Google Scholar 

  • Bergersen FJ (1982) Root nodules of legumes: structure and functions. Wiley, New York

    Google Scholar 

  • Bergersen FJ (1997) Regulation of nitrogen fixation in infected cells of leguminous root nodules in relation to O2 supply. Plant Soil 191:189–203

    Article  CAS  Google Scholar 

  • Bergersen FJ, Turner GL (1993) Effects of concentrations of substrates supplied to N2-fixing soybean bacteroids in flow chamber reactions. Proc R Soc Lond B 245:59–64

    Article  Google Scholar 

  • Boivin C, Ndoye I, Molouba F, Lajudie P, Dupuy N, Dreyfus B (1997) Stem nodulation in legumes: diversity, mechanisms, and unusual characteristics. Crit Rev Plant Sci 16:1–30

    CAS  Google Scholar 

  • Bradley DJ, Wood EA, Larkins AP, Galfre G, Butcher GW, Brewin NJ (1988) Isolation of monoclonal antibodies reacting with peribacteroid membranes and other components of pea root nodules containing Rhizobium leguminosarum. Planta 173:149–160

    Article  CAS  Google Scholar 

  • Buttery BR (1987) Some effects of waterlogging and supply of combined nitrogen on soybean growth. Can J Plant Sci 67:69–77

    Article  CAS  Google Scholar 

  • Capoen W, Den Herder J, Rombauts S, De Gussem J, De Keyser A, Holsters M, Goormachtig S (2007) Comparative transcriptome analysis reveals common and specific tags for root hair and crack-entry invasion in Sesbania rostrata. Plant Physiol 144:1878–1889

    Article  CAS  PubMed  Google Scholar 

  • Capoen W, Den Herder J, Sun J, Verplancke C, De Keyser A, De Rycke R, Goormachtig S, Oldroyd G, Holsters M (2009) Calcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrata. Plant Cell 21:1526–1540

    Article  CAS  PubMed  Google Scholar 

  • Criswell JG, Havelka UD, Quebedeaux B, Hardy RWF (1976) Adaptation of nitrogen fixation by intact soybean nodules to altered rhizosphere pO2. Plant Physiol 58:622–625

    Article  CAS  PubMed  Google Scholar 

  • D'Haeze W, Gao M, De Rycke R, Van Montagu M, Engler G, Holsters M (1998) Roles for azorhizobial nod factors and surface polysaccharides in intercellular invasion and nodule penetration, respectively. Mol Plant-Microbe Interact 11:999–1008

    Article  Google Scholar 

  • D'Haeze W, Mergaert P, Promé JC, Holsters M (2000) Nod factor requirements for efficient stem and root nodulation of the tropical legume Sesbania rostrata. J Biol Chem 275:15676–15684

    Article  PubMed  Google Scholar 

  • D'Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12:79–105

    Article  Google Scholar 

  • D'Haeze W, De Rycke R, Mathis R, Goormachtig S, Pagnotta S, Verplancke C, Capoen W, Holsters M (2003) Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proc Natl Acad Sci USA 100:11789–11794

    Article  PubMed  CAS  Google Scholar 

  • Dakora FD, Atkins CA (1990a) Morphological and structural adaptation of nodules of cowpea to functioning under sub- and supra-ambient oxygen pressure. Planta 182:572–582

    Article  Google Scholar 

  • Dakora FD, Atkins CA (1990b) Effect of pO2 on growth and nodule functioning of symbiotic cowpea (Vigna unguiculata L. Walp.). Plant Physiol 93:948–955

    Article  CAS  PubMed  Google Scholar 

  • Dakora FD, Atkins CA (1990c) Effect of pO2 during growth on the gaseous diffusional properties of nodules of cowpea (Vigna unguiculata L. Walp.). Plant Physiol 93:956–961

    Article  CAS  PubMed  Google Scholar 

  • Dakora FD, Atkins CA (1991) Adaptation of nodulated soybean (Glycine max L. Merr.) to growth in rhizospheres containing nonambient pO2. Plant Physiol 96:728–736

    Article  CAS  PubMed  Google Scholar 

  • de Lorenzo C, Iannetta PPM, Fernandez-Pascual M, James EK, Lucas MM, Sprent JI, Witty JF, Minchin FR, de Felipe MR (1993) Oxygen diffusion in lupin nodules II. Mechanisms of diffusion barrier operation. J Exp Bot 44:1469–1474

    Article  Google Scholar 

  • Den Herder J, Schroeyers K, Holsters M, Goormachtig S (2006) Signaling and gene expression for water-tolerant legume nodulation. Crit Rev Plant Sci 25:367–380

    Article  CAS  Google Scholar 

  • Denison RF, Kinraide TB (1995) Oxygen-induced membrane depolarizations in legume root nodules (Possible evidence for an osmoelectrical mechanism controlling nodule gas permeability). Plant Physiol 108:235–240

    CAS  PubMed  Google Scholar 

  • Denison RF, Layzell DB (1991) Measurement of legume nodule respiration and photometry of leghemoglobin. Plant Physiol 96:137–143

    Article  CAS  PubMed  Google Scholar 

  • Denison RF, Hunt S, Layzell DB (1992) Nitrogenase activity, nodule respiration, and O(2) permeability following detopping of Alfalfa and Birdsfoot trefoil. Plant Physiol 98:894–900

    Article  CAS  PubMed  Google Scholar 

  • Drevon JJ, Gaudillère JP, Bernoud JP, Jardinet F, Evrard M (1991) Influence of photon flux density and fluctuation on the nitrogen fixing Glycine max (L Merr)-Bradyrhizobium japonicum symbiosis in a controlled environment. Agronomie 11:193–199

    Article  Google Scholar 

  • Dreyfus BM, Dommergues YR (1981) Nitrogen-fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiol Lett 10:313–317

    Article  CAS  Google Scholar 

  • Evans WR, Fleischman DE, Calvert HE, Pyati PV, Alter GM, Subba Rao NS (1990) Bacteriochlorophyll and photosynthetic reaction centers in Rhizobium Strain BTAi 1. Appl Environ Microbiol 56:3445–3449

    CAS  PubMed  Google Scholar 

  • Fernandez-Lopez M, Goormachtig S, Gao M, D'Haeze W, Van Montagu M, Holsters M (1998) Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata. Proc Natl Acad Sci USA 95:12724–12728

    Article  CAS  PubMed  Google Scholar 

  • Ferrell RT, Himmelblau DM (1967) Diffusion coefficients of nitrogen and oxygen in water. J Chem Eng Data 12:111–115

    Article  CAS  Google Scholar 

  • Fleurat-Lessard P, Michonneau P, Maeshima M, Drevon JJ, Serraj R (2005) The distribution of aquaporin subtypes (PIP1, PIP2 and gamma-TIP) is tissue dependent in soybean (Glycine max) root nodules. Ann Bot 96:457–460

    Article  CAS  PubMed  Google Scholar 

  • Goormachtig S, Capoen W, James EK, Holsters M (2004a) Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. Proc Natl Acad Sci USA 101:6303–6308

    Article  CAS  PubMed  Google Scholar 

  • Goormachtig S, Capoen W, Holsters M (2004b) Rhizobium infection: lessons from the versatile nodulation behaviour of water-tolerant legumes. Trends Plant Sci 9:518–522

    Article  CAS  PubMed  Google Scholar 

  • Geurts R, Bisseling T (2002) Rhizobium nod factor perception and signalling. Plant Cell 14:239–249

    Google Scholar 

  • Guinel FC, Sloetjes LL (2000) Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym 16), a pleiotropic mutant that nodulates poorly and has pale green leaves. J Exp Bot 51:885–894

    Article  CAS  PubMed  Google Scholar 

  • Holsters H, Capoen W, Den Herder J, Goormachtig S (2005) Signaling for nodulation in a water-tolerant legume. In: Wang Y-P, Lin M, Tian ZX, Elmerich C, Newton WE (eds) Biological nitrogen fixation, sustainable agriculture, and the environment. Proceedings of the 14th International Nitrogen Fixation Congress, Springer, The Netherlands, pp 161–164

    Chapter  Google Scholar 

  • Hunt S, King BJ, Canvin DT, Layzell DB (1987) Steady and nonsteady state gas exchange characteristics of soybean nodules in relation to the oxygen diffusion barrier. Plant Physiol 84:164–172

    Article  CAS  PubMed  Google Scholar 

  • Hunt S, King BJ, Layzell DB (1989) Effects of gradual increases in O2 concentration on nodule activity in soybean. Plant Physiol 91:315–321

    Article  CAS  PubMed  Google Scholar 

  • Hunt S, Layzell DB (1993) Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol Plant Mol Biol 44:483–511

    Article  CAS  Google Scholar 

  • Ianetta PPM, De Lorenzo C, Iannetta PPM, James EK, Fernandez-Pascual M, Sprent JI, Lucas MM, Witty JF, De Felipe MR, Minchin FR (1993) Oxygen diffusion in lupin nodules I. Visualization of diffusion barrier operation. J Exp Bot 44:1461–1467

    Article  Google Scholar 

  • Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    Article  CAS  Google Scholar 

  • James EK, Sprent JI, Minchin FR, Brewin NJ (1991) Intercellular location of glycoprotein in soybean nodules: effect of altered rhizosphere oxygen concentration. Plant Cell Environ 14:467–476

    Article  CAS  Google Scholar 

  • James EK, Sprent JI, Sutherland JM, McInroy SG, Minchin FR (1992a) The structure of nitrogen fixing root nodules on the aquatic mimosoid legume Neptunia plena. Ann Bot 69:173–180

    Google Scholar 

  • James EK, Minchin FR, Sprent JI (1992b) The physiology and nitrogen-fixing capability of aquatically and terrestrially grown Neptunia plena: the importance of nodule oxygen supply. Ann Bot 69:181–187

    Google Scholar 

  • James EK, Crawford RMM (1998) Effect of oxygen availability on nitrogen fixation by two Lotus species under flooded conditions. J Exp Bot 49:599–609

    Article  CAS  Google Scholar 

  • James EK, Minchin FR, Oxborough K, Cookson A, Baker NR, Witty JF, Crawford RMM, Sprent JI (1998) Photosynthetic oxygen evolution within Sesbania rostrata stem nodules. Plant J 13:29–38

    Article  CAS  Google Scholar 

  • James EK, Sprent JI (1999) Development of N2-fixing nodules on the wetland legume Lotus uliginosus exposed to conditions of flooding. New Phytol 142:219–231

    Article  Google Scholar 

  • James EK, Iannetta PPM, Deeks L, Sprent JI, Minchin FR (2000) Detopping causes production of intercellular space occlusions in both the cortex and infected region of soybean nodules. Plant Cell Environ 23:377–386

    Article  Google Scholar 

  • James EK, Loureiro MF, Pott A, Pott VIJ, Martins CM, Franco AA, Sprent JI (2001) Flooding-tolerant legume symbioses from the Brazilian Pantanal. New Phytol 150:723–738

    Article  Google Scholar 

  • Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–495

    Google Scholar 

  • King BJ, Hunt S, Weagle GE, Walsh KB, Pottier RH, Canvin DT, Layzell DB (1988) Regulation of O2 concentration in soybean nodules observed by in situ spectroscopic measurement of leghemoglobin oxygenation. Plant Physiol 87:296–299

    Article  CAS  PubMed  Google Scholar 

  • King BJ, Layzell DB (1991) Effect of increases in oxygen concentration during the argon-induced decline in nitrogenase activity in root nodules of soybean. Plant Physiol 96:376–381

    Article  CAS  PubMed  Google Scholar 

  • Koponen P, Nygren P, Domenach AM, Le Roux C, Saur E, Roggy JC (2003) Nodulation and dinitrogen fixation of legume trees in a tropical freshwater swamp forest in French Guiana. J Trop Ecol 19:655–666

    Article  Google Scholar 

  • Kuzma MM, Winter H, Storer P, Oresnik I, Atkins CA, Layzell DB (1999) The site of oxygen limitation in soybean nodules. Plant Physiol 119:399–408

    Article  CAS  PubMed  Google Scholar 

  • Layzell DB (1998) Oxygen and the control of nodule metabolism and N2 fixation. In: Emerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer Academic, Dordrecht, The Netherlands, pp 435–440

    Google Scholar 

  • Layzell DB, Hunt S, Palmer GR (1990) Mechanism of nitrogenase inhibition in soybean nodules: Pulse-modulated spectroscopy indicates that nitrogenase activity Is limited by O2. Plant Physiol 92:1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Lievens S, Goormachtig S, Den Herder J, Capoen W, Mathis R, Hedden P, Holsters M (2005) Gibberellins are involved in nodulation of Sesbania rostrata. Plant Physiol 139:1366–1379

    Article  CAS  PubMed  Google Scholar 

  • Linkemer G, Board JE, Musgrave ME (1998) Waterlogging effects on growth and yield components in late-planted soybean. Crop Sci 38:1576–1584

    Article  CAS  PubMed  Google Scholar 

  • Loureiro MF, de Faria SM, James EK, Pott A, Franco AA (1994) Nitrogen-fixing stem nodules of the legume Discolobium pulchellum Benth. New Phytologist 128:283–295

    Article  CAS  Google Scholar 

  • Loureiro MF, James EK, Sprent JI, Franco AA (1995) Stem and root nodules on the tropical wetland legume Aeshynomene fluminensis. New Phytol 130:531–544

    Article  Google Scholar 

  • Loureiro MF, James EK, Franco AA (1998) Nitrogen fixation by legumes in flooded regions. In: Scarano FR, Franco AC (eds) Oecologia Brasiliensis, vol IV. PPGE-UFRJ, Rio de Janeiro, Brazil, pp 195–233

    Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • Minchin FR, Pate JS (1975) Effects of water, aeration, and salt regime on nitrogen fixation in a nodulated legume. Definition of an optimum root environment. J Exp Bot 26:60–69

    Article  CAS  Google Scholar 

  • Minchin FR, Summerfield RJ (1976) Symbiotic nitrogen fixation and vegetative growth of cowpea (Vigna unguiculata (L.) walp.) in waterlogged conditions. Plant Soil 45:113–127

    Article  CAS  Google Scholar 

  • Minchin FR (1997) Regulation of oxygen diffusion in legume nodules. Soil Biol Biochem 29:881–888

    Article  CAS  Google Scholar 

  • Minchin FR, James EK, Becana M (2008) Oxygen diffusion, production of reactive oxygen and nitrogen species, and antioxidants in legume nodules. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, The Netherlands, pp 321–362

    Google Scholar 

  • Ndoye I, de Billy F, Vasse J, Dreyfus B, Truchet G (1994) Root nodulation of Sesbania rostrata. J Bacteriol 176:1060–1068

    CAS  PubMed  Google Scholar 

  • Ober ES, Sharp RE (1996) A microsensor for direct measurement of O2 partial pressure within plant tissues. J Exp Bot 44:447–454

    Article  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Pankhurst CE, Sprent JI (1975a) Effects of water stress on the respiratory and nitrogen-fixing activity of soybean root nodules. J Exp Bot 26:287–304

    Article  CAS  Google Scholar 

  • Pankhurst CE, Sprent JI (1975b) Surface features of soybean root nodules. Protoplasma 85:85–98

    Article  Google Scholar 

  • Parsons R, Day DA (1990) Mechanism of soybean nodule adaptation to different oxygen pressures. Plant Cell Environ 13:501–512

    Article  Google Scholar 

  • Patriarca E, Tate R, Ferraioli S, Iaccarrino M (2004) Organogenesis of legume root nodules. Int Rev Cytol 234:201–263

    Article  PubMed  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530

    Article  CAS  PubMed  Google Scholar 

  • Perata P, Voesenek LA (2007) Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci 12:43–46

    Article  CAS  PubMed  Google Scholar 

  • Purcell LC, Sinclair TR (1994) An osmotic hypothesis for the regulation of oxygen permeability in soybean nodules. Plant Cell Environ 17:837–843

    Article  Google Scholar 

  • Pugh R, Witty JF, Mytton LR, Minchin FR (1995) The effect of waterlogging on nitrogen fixation and nodule morphology in soil-grown white clover (Trifolium repens L.). J Exp Bot 46:285–290

    Article  CAS  Google Scholar 

  • Ralston EJ, Imsande J (1982) Entry of oxygen and nitrogen into intact soybean nodules. J Exp Bot 33:208–214

    Article  CAS  Google Scholar 

  • Saur E, Carcelle S, Guezennec S, Rousteau A (2000) Nodulation of legume species in wetlands of Guadeloupe (Lesser Antilles). Wetlands 20:730–734

    Article  Google Scholar 

  • Scott HD, DeAngulo J, Daniels MB, Wood LS (1989) Flood duration effects on soybean growth and yield. Agron J 81:631–636

    Article  Google Scholar 

  • Schaede R (1940) Die Knöllchen der adventiven Wasserwurzeln Von Neptunia oleracea und ihre Bakteriensymbiose. Planta 31:1–21

    Article  Google Scholar 

  • Schroeyers K, Chaparro C, Goormachtig S, Holsters M (2004) Nodulation-enhanced sequences from the water stress-tolerant tropical legume Sesbania rostrata. Plant Sci 167:207–216

    Article  CAS  Google Scholar 

  • Serraj R, Fleurat-Lessard P, Jaillard B, Drevon JJ (1995) Structural changes in the inner-cortex cells of soybean root-nodules are induced by short-term exposure to high salt or oxygen concentrations. Plant Cell Environ 18:455–462

    Article  CAS  Google Scholar 

  • Serraj R, Frangne N, Maeshima M, Fleurat-Lessard P, Drevon JJ (1998) γ-TIP cross-reacting protein is abundant in the cortex of soybean N2-fixing nodules. Planta 206:681–684

    Article  CAS  Google Scholar 

  • Sheehy JE, Minchin FR, Witty JF (1983) Biological control of the resistance to oxygen flux in nodules. Ann Bot 60:345–351

    Google Scholar 

  • Shimamura S, Mochizuki T, Nada Y, Fukuyama M (2003) Formation and function of secondary aerenchyma in hypocotyl, roots and nodules of soybean (Glycine max) under flooded conditions. Plant Soil 251:351–359

    Article  CAS  Google Scholar 

  • Sprent JI (1999) Nitrogen fixation and growth of non-crop legume species in diverse environments. Perspect Plant Ecol Evol Syst 2:149–162

    Article  Google Scholar 

  • Sprent JI, James EK (2007) Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol 144:575–581

    Article  CAS  PubMed  Google Scholar 

  • Stacey G, Libault M, Brechenmacher L, Wan J, May GD (2006) Genetics and functional genomics of legume nodulation. Curr Opin Plant Sci 9:110–121

    Article  CAS  Google Scholar 

  • Subba-Rao NS, Mateos PF, Baker D, Pankratz HS, Palma J, Dazzo FB, Sprent JI (1995) The unique root-nodule symbiosis between Rhizobium and the aquatic legume, Neptunia natans (L. f.) Druce. Planta 196:311–320

    Article  CAS  Google Scholar 

  • Sung L, Moloney AH, Hunt S, Layzell DB (1991) The effect of excision on O2 diffusion and metabolism in soybean nodules. Physiol Plant 83:67–74

    Article  CAS  Google Scholar 

  • Sung FJM (1993) Waterlogging effect on nodule nitrogenase and leaf nitrate reductase activities in soybean. Field Crops Res 35:183–189

    Article  Google Scholar 

  • Thomas AL, Guerreiro SMC, Sodek L (2005) Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann Bot 96:1191–1198

    Article  CAS  PubMed  Google Scholar 

  • Tjepkema JD, Yocum CS (1974) Measurement of oxygen partial pressure within soybean nodules by oxygen microelectrodes. Planta 119:351–360

    Article  Google Scholar 

  • Udvardi MK, Tabata S, Parniske M, Stougaard J (2005) Lotus japonicus: legume research in the fast lane. Trends Plant Sci 10:222–228

    Article  CAS  PubMed  Google Scholar 

  • van Dongen JT, Schurr U, Pfister M, Geigenberger P (2003) Phloem metabolism and function have to cope with low internal oxygen. Plant Physiol 131:1529–1543

    Article  PubMed  CAS  Google Scholar 

  • VandenBosch KA, Bradley DJ, Knox JP, Perotto S, Butcher GW, Brewin NJ (1989) Common components of the infection thread matrix and the intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots. EMBO J 8:335–342

    CAS  PubMed  Google Scholar 

  • Vessey JK, Walsh KB, Layzell DB (1988) Oxygen limitation of N2 fixation in stem-girdled and nitrate-treated soybean. Physiol Plant 73:113–121

    Article  CAS  Google Scholar 

  • Walker BA, Pate JS, Kuo J (1983) Nitrogen fixation by nodulated roots of Viminaria juncea (Schrad. & Wendl.) Hoffmans, (Fabaceae) when submerged in water. Aust J Plant Physiol 10:409–421

    Article  CAS  Google Scholar 

  • Walter CA, Bien A (1989) Aerial root nodules in the tropical legume, Pentaclethra macroloba. Oceologia 80:27–31

    Article  Google Scholar 

  • Wei H, Layzell DB (2006) Adenylate-coupled ion movement. A mechanism for the control of nodule permeability to O2 diffusion. Plant Physiol 141:280–287

    Article  CAS  PubMed  Google Scholar 

  • Weisz PR, Sinclair TR (1987a) Regulation of soybean nitrogen fixation in response to rhizosphere oxygen: I. Role of nodule respiration. Plant Physiol 84:900–906

    Article  CAS  PubMed  Google Scholar 

  • Weisz PR, Sinclair TR (1987b) Regulation of soybean nitrogen fixation in response to rhizosphere oxygen: II. Quantification of nodule gas permeability. Plant Physiol 84:906–910

    Article  CAS  PubMed  Google Scholar 

  • Witty JF, Minchin FR, Skøt L, Sheehy JE (1986) Nitrogen fixation and oxygen in legume root nodules. Oxford Surv Plant Mol Cell Biol 3:275–314

    CAS  Google Scholar 

  • Witty JF, Skøt L, Revsbech NP (1987) Direct evidence for changes in the resistance of legume root nodules to O2 resistance. J. Exp Bot 38:1129–1140

    Article  Google Scholar 

  • Wycoff KL, Hunt S, Gonzales MB, VandenBosch KA, Layzell DB, Hirsch AM (1998) Effects of oxygen on nodule physiology and expression of nodulins in alfalfa. Plant Physiol 117:385–395

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12:193–201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by National Science Foundation grant MCB-0618075 to DMR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roberts, D.M., Choi, W.G., Hwang, J.H. (2010). Strategies for Adaptation to Waterlogging and Hypoxia in Nitrogen Fixing Nodules of Legumes. In: Mancuso, S., Shabala, S. (eds) Waterlogging Signalling and Tolerance in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10305-6_3

Download citation

Publish with us

Policies and ethics