Skip to main content

Improvement of Plant Waterlogging Tolerance

  • Chapter
  • First Online:
Waterlogging Signalling and Tolerance in Plants

Abstract

Sources of tolerance and a reliable trait evaluation method are crucial in breeding for abiotic stress tolerance. Waterlogging is one of the most important abiotic stresses in high rainfall areas. Waterlogging tolerances have been reported in different plant species. However, the complexity of the trait makes it very difficult to evaluate, thus hard to breed for. A reliable screening method can make the breeding programme more successful. This chapter will summarize: genetic resources and genetic behaviour of waterlogging tolerance; different selection criteria; and QTLs controlling the tolerance. The importance of accurate phenotyping in screening for QTLs controlling the tolerance is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anjos e Silva S D dos, Sereno MJC de M, Lemons e Silva CF, Oliveira AC de, Barbosa Neto JF (2005) Genetic parameters and QTL for tolerance to flooded soils in maize. Crop Breed Appl Biotechnol 5:287–293

    Google Scholar 

  • Anjos e Silva SD dos, Sereno MJC de M, Lemons e Silva CF, Barbosa Neto JF (2006) Combining ability of maize genotypes for flooding tolerance. Ciencia Rural 36:391–396

    Google Scholar 

  • Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker-assisted selection in crop breeding – prospects and challenges. Curr Sci 87:607–619

    CAS  Google Scholar 

  • Bandyopadhyay BK, Sen HS (1992) Effect of excess soil water conditions for a short period on growth and nutrition of crops on coastal saline soil. J Indian Soc Soil Sci 40:823–827

    CAS  Google Scholar 

  • Bao XM (1997) Study on identification stage and index of waterlogging tolerance in various wheat genotypes (Triticum aestivum L.). Acta Agric Shanghai 13:32–38

    Google Scholar 

  • Bird RMcK (2000) A remarkable new teosinte from Nicaragua: growth and treatment of progeny. Maize Gen Coop Newsl 74:58–59

    Google Scholar 

  • Boru G (1996) Expression and inheritance of tolerance to waterlogging stresses in wheat (Triticum aestivum L.). PhD thesis, Oregon State University

    Google Scholar 

  • Boru G, van Ginkel M, Kronstad WE, Boersma L (2001) Expression and inheritance of tolerance to waterlogging stress in wheat. Euphytica 117:91–98

    Article  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Burgos MS, Messmer MM, Stamp P, Schmid JE (2001) Flooding tolerance of spelt (Triticum spelta L.) compared to wheat (Triticum aestivum L.) – a physiological and genetic approach. Euphytica 122:287–295

    Article  Google Scholar 

  • Cai SB, Cao Y, Fang XW (1996) Studies on the variability and combining ability of waterlogging tolerance in common wheat. Jiangsu J Agric Sci 12:1–5

    Google Scholar 

  • Cao Y, Cai SB, Wu ZS, Zhu W, Fang XW, Xiong EH (1995) Studies on genetic features of waterlogging tolerance in wheat. Jiangsu J Agric Sci 11:11–15

    Google Scholar 

  • Cao Y, Cai SB, Zhu W, Fang XW (1992) Genetic evaluation of waterlogging resistance in the wheat variety Nonglin 46. Crop Genet Res 4:31–32

    Google Scholar 

  • Cao Y, Cai SB, Zhu W, Xiong EH, Fang XW (1994) Combining ability analysis of waterlogging tolerance and main agronomic traits in common wheat. Scientia Agric Sinica 27:50–55

    Google Scholar 

  • Collaku A, Harrison SA (2002) Losses in wheat due to waterlogging. Crop Sci 42:444–450

    Article  Google Scholar 

  • Collaku A, Harrison SA (2005) Heritability of waterlogging tolerance in wheat. Crop Sci 45:722–727

    Article  Google Scholar 

  • Cornelious B, Chen P, Chen Y, de Leon N, Shannon JG, Wang D (2005) Identification of QTLs underlying water-logging tolerance in soybean. Mol Breed 16:103–112

    Article  Google Scholar 

  • Davies MS, Hillman GC (1988) Effects of soil flooding on growth and grain yield of populations of tetraploid and hexaploid species of wheat. Ann Bot 62:597–604

    Google Scholar 

  • Ding N, Musgrave ME (1995) Relationship between mineral coating on roots and yield performance of wheat under waterlogging stress. J Exp Bot 46:939–945

    Article  Google Scholar 

  • Drew MC (1991) Oxygen deficiency in the root environment and plant mineral nutrition. In: Jackson MB et al (eds) Plant life under oxygen deprivation. Academic, The Hague, pp 301–316

    Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  CAS  PubMed  Google Scholar 

  • Drew MC, Sisworo EJ (1977) Early effects of flooding on nitrogen deficiency and leaf chlorosis in barley. New Phytol 79:567–571

    Article  CAS  Google Scholar 

  • Fang XW, Cao Y, Cai SB, Xiong EH, Zhu W (1997) Genetic evaluation of waterlogging tolerance in Triticum macha. Jiangsu J Agric Sci 13:73–75

    Google Scholar 

  • Gardner WK, Flood RG (1993) Less waterlogging damage with long season wheats. Cereal Res Comm 21:337–343

    Google Scholar 

  • Githiri SM, Watanabe S, Harada K, Takahashi R (2006) QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed 125:613–618

    Article  CAS  Google Scholar 

  • Hamachi Y, Furusho M, Yoshida T (1989) Heritability of wet endurance in malting barley. Jpn J Breed 39:195–202

    Google Scholar 

  • Hamachi Y, Yoshino M, Furusho M, Yoshida T (1990) Index of screening for wet endurance in malting barley. Jpn J Breed 40:361–366

    Google Scholar 

  • Hou FF, Thseng FS, Wu ST, Takeda K (1995) Varietal differences and diallel analysis of pre-germination flooding tolerance in soybean seed. Bull Res Inst Bioresour (Okayama University) 3:35–41

    Google Scholar 

  • Huang BR, Johnson JW, Nesmith S, Bridges DC (1994a) Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. J Exp Bot 45:193–202

    Article  Google Scholar 

  • Huang BR, Johnson JW, Nesmith S, Bridges DC (1994b) Root and shoot growth of wheat genotypes in response to hypoxia and subsequent resumption of aeration. Crop Sci 34:1538–1544

    Article  Google Scholar 

  • Ikeda T, Higashi S, Kawaide T (1955) Studies on the wet-injury resistance of wheat and barley varieties. (II) Varietal difference of wet-injury resistance of wheat and barley. Bull Division Plant Breed Cultivation, Tokai-Kinki, National Agricultural Experiment Station 2:11–16

    Google Scholar 

  • Ikeda T, Higashi S, Kawaide T, Saigo S (1954) Studies on the wet-injury resistance of wheat and barley varieties. (I) Studies on the method of testing wet-injury resistance of wheat and barley varieties. Bull Division Plant Breed Cultivation, Tokai-Kinki, National Agricultural Experiment Station 1:21–26

    Google Scholar 

  • Kearsey MJ (1998) The principles of QTL analysis (a minimal mathematics approach). J Exp Bot 49:1619–1623

    Article  CAS  Google Scholar 

  • Kozlowski TT (1984) Extent, causes, and impact of flooding. In: Kozlowski TT (ed) Flooding and plant growth. Academic, London, pp 9–45

    Google Scholar 

  • Lemons e Silva CF, Mattos LAT de, Oliveira AC de, Carvalho FIF de, Freitas FA de, Anjos e Silva SD dos (2003) Flooding tolerance in oats. Crop Breed Appl Biotechnol 5:29–42

    Google Scholar 

  • Li HB, Vaillancourt R, Mendham NJ, Zhou MX (2008) Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genomics 9:401

    Article  PubMed  Google Scholar 

  • Malik AI, Colmer TD, Lambers H, Schortemeyer M (2001) Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Aust J Plant Physiol 28:1121–1131

    Google Scholar 

  • Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B (2005a) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 142:33–42

    Article  Google Scholar 

  • Mano Y, Muraki M, Fujimori M, Takamizo T (2005b) Varietal difference and genetic analysis of adventitious root formation at the soil surface during flooding in maize and teosinte seedlings. Jpn J Crop Sci 74:41–46

    Article  CAS  Google Scholar 

  • Mano Y, Muraki M, Komatsu T, Fujimori M, Akiyama F, Takamizo T (2002) Varietal difference in pre-germination flooding tolerance and waterlogging tolerance at the seedling stage in maize inbred lines. Jpn J Crop Sci 71:361–367

    Google Scholar 

  • Mano Y, Muraki M, Takamizo T (2006) Identification of QTL controlling flooding tolerance in reducing soil conditions in maize (Zea mays L.) seedlings. Plant Prod Sci 9:176–181

    Article  CAS  Google Scholar 

  • Mano Y, Omori F, Muraki M, Takamizo T (2005c) QTL mapping of adventitious root formation under flooding conditions in tropical maize (Zea mays L.) seedlings. Breed Sci 55:343–347

    Article  Google Scholar 

  • Mazur BJ, Tingey SV (1995) Genetic mapping and introgression of genes of agronomic importance. Curr Opin Biotechnol 6:175–182

    Article  CAS  Google Scholar 

  • McKersie BD, Hunt LA (1987) Genotypic differences in tolerance of ice encasement, low temperature flooding, and freezing in winter wheat. Crop Sci 27:860–863

    Article  Google Scholar 

  • Muramatsu N, Kokubun M, Horigane A (2008) Relation of seed structures to soybean cultivar difference in pre-germination flooding tolerance. Plant Prod Sci 11:434–439

    Article  Google Scholar 

  • Musgrave ME, Ding N (1998) Evaluating wheat cultivars for waterlogging tolerance. Crop Sci 38:90–97

    Article  Google Scholar 

  • Oosterhuis DM, Scott HD, Hampton RE, Wullschleger SD (1990) Physiological responses of two soybean [Glycine max (L.) Merr] cultivars to short-term flooding. Environ Exp Bot 30:85–92

    Article  Google Scholar 

  • Pang JY, Cuin T, Shabala L, Zhou MX, Mendham NJ, Shabala S (2007) Effect of secondary metabolites associated with anaerobic soil conditions on ion fluxes and electrophysiology in barley roots. Plant Physiol 145:266–276

    Article  CAS  PubMed  Google Scholar 

  • Pang JY, Mendham N, Zhou MX, Newman I, Shabala S (2006) Microelectrode ion and O2 flux measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ 29:1107–1121

    Article  CAS  PubMed  Google Scholar 

  • Pang JY, Zhou MX, Mendham NJ, Shabala S (2004) Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust J Agric Res 55:895–906

    Article  Google Scholar 

  • Poysa VW (1984) The genetic control of low temperature, ice-encasement, and flooding tolerances by chromosomes 5A, 5B, and 5D in wheat. Cereal Res Comm 12:135–141

    Google Scholar 

  • Qiu FZ, Zheng YL, Zhang ZL, Xu SZ (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann Bot 99:1067–1081

    Article  PubMed  Google Scholar 

  • Qiu JD, Ke YA (1991) Study of determination of wet tolerance of 4572 barley germplasm resources. Acta Agric Shanghai 7:27–32

    Google Scholar 

  • Rathore TR, Warsi MZK, Singh NN, Vasal SK (1998) Production of Maize under excess soil moisture (Waterlogging) conditions. 2nd Asian regional maize workshop PACARD, Laos Banos, Phillipines, 23–27 February 1998, p 23

    Google Scholar 

  • Reyna N, Cornelious B, Shannon JG, Sneller CH (2003) Evaluation of a QTL for waterlogging tolerance in Southern soybean germplasm. Crop Sci 43:2077–2082

    Article  Google Scholar 

  • Sachs MM (1993) Molecular genetic basis of metabolic adaptation to anoxia in maize and its possible utility for improving tolerance of crops to soil waterlogging. In: Jackson MB, Black CR (eds) Interacting stresses on plants in a changing climate. Springer-Verlag GmbH, Berlin, pp 375–393

    Google Scholar 

  • Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, Yamada N, Hirota N, Hirata K, Yoshikawa T, Saito H, Teraishi M, Okumoto Y, Tsukiyama T, Tanisaka T (2009) QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci 176:514–521

    Article  CAS  Google Scholar 

  • Scott HD, DeAngulo J, Wood LS, Pitts DJ (1990) Influence of temporary flooding at three growth stages on soybeans grown on a clayey soil. J Plant Nutr 13:1045–1071

    Article  Google Scholar 

  • Setter TL, Burgess P, Waters I, Kuo J (1999) Genetic Diversity of barley and wheat for waterlogging tolerance in Western Australia. In 9th Australian Barley technical symposium, Melbourne, Australia. pp 2.17.1–2.17.7

    Google Scholar 

  • Setter TL, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant soil 253:1–34

    Article  CAS  Google Scholar 

  • Taeb M, Koebner RMD, Forster BP (1993) Genetic variation for waterlogging tolerance in the Triticeae and the chromosomal location of genes conferring waterlogging tolerance in Thinopyrum elongatum. Genome 36:825–830

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Fukuyama T (1986) Variation and geographical distribution of varieties for flooding tolerance in barley seeds. Barley Genet Newsl 16:28–29

    Google Scholar 

  • Thomson CJ, Colmer TD, Watkin ELJ, Greenway H (1992) Tolerance of wheat (Triticum aestivum cvs. Gamenya and Kite) and triticale (Triticosecale cv. Muir) to waterlogging. New Phytol 120:335–344

    Article  Google Scholar 

  • van Ginkel M, Rajaram S, Thijssen M (1992) Waterlogging in wheat: germplasm evaluation and methodology development. Seventh regional wheat workshop for eastern, central and southern Africa, Nakuru, Kenya, 16–19 September 1991

    Google Scholar 

  • VanToai TT, Beuerlein JE, Schmitthenner AF, Martin SK St (1994) Genetic variability for flooding tolerance in soybeans. Crop Sci 34:1112–1115

    Article  Google Scholar 

  • VanToai TT, Martin SK St, Chase K, Boru G, Schnipke V, Schmitthenner AF, Lark KG (2001) Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci 41:1247–1252

    Article  Google Scholar 

  • VanToai TT, Nurjani N (1996) Screening for flooding tolerance of soybean. Soyb Genet Newsl 23:210–213

    Google Scholar 

  • Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Nike RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–103

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zhao TJ, Yu DY, Chen SY, Gai JY (2008) Inheritance and QTL analysis of submergence tolerance at seedling stage in soybean [Glycine max (L.) Merr.]. Acta Agron Sinica 34:748–753

    Article  CAS  Google Scholar 

  • Wang SG, He LR, Li ZW, Zeng JG, Chai YR, Hou L (1996) A comparative study on the resistance of barley and wheat to waterlogging. Acta Agron Sinica 22:228–232

    Google Scholar 

  • Wang J, Zhou MX, Xu RG, Lu C, Huang ZL (2007) Studies on selecting indices and evaluation methods for waterlogging tolerance in barley (Hordeum vulgare L.). Scientia Agric Sinica 40:2145–2152

    Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Nat Acad Sci 101:9915–9920

    Article  CAS  PubMed  Google Scholar 

  • Wenzl P, Li HB, Carling J, Zhou MX, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang JP, Raman R, Smith PK, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206–227

    Article  PubMed  Google Scholar 

  • Xiao YP, Wei K, Chen JX, Zhou MX, Zhang GP (2007) Genotypic difference in growth inhibition and yield loss in barley under waterlogging stress. J Zhejiang University (Agriculture and Life Science). 33:525–532

    CAS  Google Scholar 

  • Xu RG, Lu C, Huang ZL, Huang ZR, Xu JH, Gong ZS (2005) Identification on Waterlogging Tolerance of Barley. Barley Sci 2:11–15

    Google Scholar 

  • Yang J, Shen Q, Wang N, Li X, Yang W (1999) Wet endurance of Barley dwarf mutants. Acta Agriculturae Nucleatae Sinica 13:147–151

    Google Scholar 

  • Yeboah MA, Chen XH, Liang GH, Gu MH, Xu CW (2008a) Inheritance of waterlogging tolerance in cucumber (Cucumis sativus L.). Euphytica 1620:145–154

    Article  Google Scholar 

  • Yeboah MT, Chen XH, Chen RF, Alfandi M, Liang GH, Gu MH (2008b) Mapping Quantitative Trait Loci for Waterlogging Tolerance in Cucumber Using SRAP and ISSR Markers. Biotechnology 7:157–167

    Article  CAS  Google Scholar 

  • Zhou MX, Li HB, Mendham NJ (2007) Combining ability of waterlogging tolerance in barley (Hordeum vulgare L.). Crop Sci 47:278–284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meixue Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, M. (2010). Improvement of Plant Waterlogging Tolerance. In: Mancuso, S., Shabala, S. (eds) Waterlogging Signalling and Tolerance in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10305-6_13

Download citation

Publish with us

Policies and ethics