Skip to main content

The Concept of the Atom

  • Chapter
  • First Online:
Atoms, Molecules and Photons

Part of the book series: Graduate Texts in Physics ((GTP))

  • 7109 Accesses

Abstract

Our present knowledge about the size and internal structure of atoms is the result of a long development of ideas and concepts that were initially based both on philosophical speculations and on experimental hints, but were often not free of errors. Only during the 19th century did the increasing number of detailed and carefully planned experiments, as well as theoretical models that successfully explained macroscopic phenomena by the microscopic atomic structure of matter, could collect sufficient evidence for the real existence of atoms and therefore convinced more and more scientists. However, even around the year 1900, some well-reputed chemists, such as Wilhelm Ostwald (1853–1932), and physicists, e.g., Ernst Mach (1838–1916), still doubted the real existence of atoms. They regarded the atomic model as only a working hypothesis that could better explain many macroscopic phenomena, but should not be taken as reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Isaac Asimov: The History of Physics (Walker & Company, New York 1984); B. Pullmann: The Atom in the History of Human Thought (Oxford Univ. Press, Oxford 2002)

    Google Scholar 

  2. J.D. Bernal: A History of Classical Physics (Barnes & Noble, Basking Ridge, N.J. 1997); J. McDonnell: The Concept of Atoms from Demokritus to John Dalton (Edwin Mellen Press, New York 1992); J. Agassi: The Continious Revolution: A History of Physics from the Greeks to Einstein (McGraw Hill 1968); R.E. Peierls: Atomic History (Springer, Berlin, Heidelberg, 1997)

    Google Scholar 

  3. R. Purrington: Physics in the Nineteenth Century (Rutgers Univ. Press, Camden, N.J. 1997); C. Cercignani: Boltzmann, the Man who trusted Atoms (Oxford Univ. Press, Oxford 1999)

    MATH  Google Scholar 

  4. H. Krach: Quantum Generations: A History of Physics in the Twentieth Century (Princeton Univ. Press, Princeton 2002)

    Google Scholar 

  5. E. Segrë: Modern Physicists and their Discoveries, Vol. 1: From Falling Bodies to Radio Waves, Vol. 2: From X-Rays to Quarks (W.H. Freeman, San Francisco 1984)

    Google Scholar 

  6. J. Mehra, H. Rechenberg: The Historical Develop-ment of Quantum Theory (Springer, Berlin, Heidelberg 1982–2000)

    Google Scholar 

  7. J. Dalton: A New System of Chemical Philosophy (Bickerstaff London 1808) reproduced as facsimile by William Dawson & Sons, London, Science Classics Library (New York 1964) and Cambridge Library Collection, Cambridge 2010

    Google Scholar 

  8. R.D. Deslattes: The Avogadro-Constant, Ann. Rev. Phys. Chemistry 31, 435 (1980)

    Article  ADS  Google Scholar 

  9. M.R. Moldower, J.P.M. Trusler, T.J. Edwards, J.B. Mehl, R.S. Davis: Measurement of the Universal Gas Constant using a spherical acoustic resonator, Phys. Rev. Lett. 60, 249 (1988)

    Article  ADS  Google Scholar 

  10. D. Attwood: Soft X-Rays and Extrem UV-Radiation. Principles and Applications (Cambridge Univ. Press 1999)

    Google Scholar 

  11. K. Fujii et al: Determination of the Avogadro constant by accurate measurement of the molar volume of a silicon crystal. Metrologia 36, 455 (1999)

    Article  ADS  Google Scholar 

  12. U. Bonse, M. Hart: An X-Ray-interferometer, Appl. Phys. Lett. 6, 155 (1965) http://e1.physik.uni-dortmund.de/xtm/ B. Kramer (ed.): The Art of Measurement (VCH, Weinheim 1988)

  13. http://e1.physik.uni-dortmund.de/xtm/

  14. U. Bonse, W. Graef: X-Ray and Neutron Interferometry, in: X-Ray Optics, Topics in Appl. Phys. Vol.22, (Springer Berlin, Heidelberg)

    Google Scholar 

  15. A. Einstein: Investigations on the Theory of Brownian Motion (Dover, New York 1956) A. Borodin, P. Salmimen: Handbook of Brownian Motion (Birkhäuser, Boston, MA 1996)

    Google Scholar 

  16. E. Kappler: Die Brown’sche Molekularbewegung, Naturwissenschaften 27, 649 (1939)

    Article  ADS  Google Scholar 

  17. K.S. Birdi: Scanning Probe Microscope: Applications in Science and Technology (CRC-Press, Boca Raton 2003)

    Book  Google Scholar 

  18. St. Flegler, J. Heckman, K.L. Klomparens: Scanning and Transmission Electron Microscope (Oxford Univ. Press, Oxford 1995)

    Google Scholar 

  19. E.W. Müller: Feldemission, Ergebn. exakter Naturwiss. XXVII 290–360 (1953)

    Article  Google Scholar 

  20. D.B. Williams, C.B. Carter: Transmission Electron Microscopy (Plenum Press, New York 1996)

    Google Scholar 

  21. R.F. Egerton: Physical Principles of Electron Microscopy: An Introduction to TEM, SEM and AEM (Springer Berlin, Heidelberg 2008)

    Google Scholar 

  22. D. Chescoe, P.J. Goodhew: The Operation of Transmission and Scanning Electron Microscopy (Oxford Science Publ., Oxford 1990)

    Google Scholar 

  23. D. Breger: The Art of the Scanning Electron Microscope (Columbia Univ. Press, New York 1995)

    Google Scholar 

  24. C.B. Gilmore: The Unseen Universe; Photographs from the Scanning Electron Microscope (Schocken Books, New York 1974)

    Google Scholar 

  25. D.A. Bonnell (ed.): Scanning Tunneling Microscopy and Spectroscopy (VCH, Weinheim 1993)

    Google Scholar 

  26. J.A. Stroscio, W.J. Kaiser (eds.): Scanning Tunneling Microscopy. In: Methods of Experimental Physics, Vol. 27 (Academic Press, New York 1993)

    Google Scholar 

  27. C. Bai: Scanning Tunneling Microscopy and its Applications: Springer Series in Surface Science Vol. 32 (2000)

    Google Scholar 

  28. R. Wiesendanger and H.J. Guntherodt: Theory of STM and related Scanning Probe Methods. Springer Series in Surface Science Vol. 3, (1998)

    Google Scholar 

  29. D.M. Eigler, E.K. Schweitzer: Positioning single atoms with a scanning tunneling microscope, Nature 344, 524 (1990)

    Article  ADS  Google Scholar 

  30. A. Kühnle, G. Meyer, S.W. Hla, K.-H. Rieder: Understanding atom movement during lateral manipulation with the STM tip using a simple simulation method, Surface Science 499, 15 (2002)

    Article  Google Scholar 

  31. S.H. Cohen: Atomic Force Microscopy/Scanning Tunneling Microscopy (Plenum Press, New York 1995)

    Google Scholar 

  32. D.Y. Lee: High Speed and higly accurate Tip-scanning atomic force microscope (VDM Verlag 2008)

    Google Scholar 

  33. S. Morita: Non-Contact Atomic Force Microscopy (Springer, Berlin, Heidelberg 2002)

    Google Scholar 

  34. Paul E. West: Introduction to Atomic Force Microscopy: Theory, Practice and Applications http://www.afmuniversity.org/Cover.html

  35. E.J.Giessibl: Advances in Atomic Force Microscopy. Rev. Mod. Phys. 75, 949 (2003)

    Article  ADS  Google Scholar 

  36. W. Wien: Handbuch der Experimentalphysik Vol. 14, Chapter: “Kanalstrahlen” (Springer, Berlin 1927)

    MATH  Google Scholar 

  37. Robert A. Millikan: Nobel Lecture (Elsevier Publ. Comp. Amsterdam 1965)

    Google Scholar 

  38. V.W. Hughes, L. Schulz (eds.): Sources of Atomic Particles. In: Methods of Experimental Physics, Vol. 4: Atomic and Electron Physics (Academic Press, San Diego 1988)

    Google Scholar 

  39. J.P. Guzowsky and G.M.Hieftje: Gas Sampling Glow Discharge: A versatile Ionization Source for Gas Chromatography Time of Flight Mass Spectrrometry. Analytical. Chem.72, 3812 (2000)

    Article  Google Scholar 

  40. I.G. Brown: The Physics and Technology of Ion Sources (Wiley,New York, 2nd ed. 2004

    Book  Google Scholar 

  41. R.A. Lyttleton, H. Bondi: On the Physical Consequence of a general excess of charge, Proc. Roy. Soc. A252, 313 (1959)

    MathSciNet  ADS  Google Scholar 

  42. G. Gallinaro, M. Marinelli, G. Morpurgo: Electric Neutrality of Matter, Phys. Rev. Lett. 38, 1255 (1977)

    Article  ADS  Google Scholar 

  43. M. Szilagyi: Electron and ion optics (Plenum Publ. Corporation, New York 1988)

    Google Scholar 

  44. H. Liebl: Applied Charged Particle Optics (Springer, Berlin, Heidelberg 2007)

    Google Scholar 

  45. P.W. Hawkes, E. Kasper (eds.): Principles of Electron Optics (Academic Press, New York 1996)

    Google Scholar 

  46. R.F. Egerton: Energy Loss Spectroscopy in the Electron Microscope (Plenum Press, New York 1996)

    Google Scholar 

  47. F. Zhang and Z. Zhang (eds): Progress in Transmission Electron Microscopy: Springer Series in Surface Science Vol. 38 and 39 (2001)

    Google Scholar 

  48. L. Reimer and H. Kohl: Transmission Electron Mircroscopy: Physics of Image Formation. (Springer Berlin, Heidelberg 2008)

    Google Scholar 

  49. E. De Hoffmann and V. Strobant: Mass Spectrometry: Principles and Applications 3rd. ed. (John Wiley & Sons, New York 2007)

    Google Scholar 

  50. J.Th. Watson, O.D. Sparkman: Introduction to Mass Spectrometry: Instrumentation, Applications and Strategies for Data Interpretation. (Wiley, 4th ed. New York 2007)

    Google Scholar 

  51. J.H. Gross: Mass Spectrometry: A Textbook 2nd ed. (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  52. J.R. de Laeter: Application of Inorganic Mass Spectrometry (Wiley Interscience, New York 2001)

    Google Scholar 

  53. J. Mattauch: Massenspektrographie und ihre Anwen-dungen und Probleme der Atom- und Kernchemie. Ergebnisse der exakten Naturwiss. 19, 170 (1940)

    Article  Google Scholar 

  54. W.C. Wiley, I.H. McLaren: Time-of-flight mass spectrometer with improved resolution, Rev. Scient. Instrum. 26, 1150 (1955)

    Article  ADS  Google Scholar 

  55. E.W. Schlag (ed.): Time of Flight Mass Spectrometry and its Applications (Elsevier, Amsterdam 1994)

    Google Scholar 

  56. D.M. Lubmann: Lasers and Mass Spectrometry (Oxford Univ. Press, Oxford 1990)

    Google Scholar 

  57. M.M. Kappes: Experimental studies of gas-phase main group clusters, Chem. Rev. 88, 369 (1988)

    Article  Google Scholar 

  58. W. Paul: Elektromagnetische Käfige für geladene und neutrale Teilchen, Phys. Blätter 46, 227 (1990) W. Paul: Angew. Chemie Int. Ed. Engl. 29, 739 (1990)

    Google Scholar 

  59. http://www.abrf.org/ABRFNews/1996/sep96iontrap.html

  60. L.S. Brown, G. Gabrielse: Geonium Theory: Physics of a single electron or ion in a Penning trap, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  61. G. Bollen, R.B. Moore, G. Savard, H. Stoltzenberg: The accuracy of heavy ion mass measurement using time of flight ion cyclotron resonance in a Penning trap, J. Appl. Phys. 68, 4355 (1990)

    Article  ADS  Google Scholar 

  62. J. Chadwick et al. (eds.): Collected papers of Lord Rutherford (Vieweg, Braunschweig 1963)

    Google Scholar 

  63. E. Rutherford, J. Chadwick: Ellis: Radiation from Radioactive Substances (Cambridge 1930, p. 197)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Demtröder .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (2010). The Concept of the Atom. In: Atoms, Molecules and Photons. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10298-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10298-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10297-4

  • Online ISBN: 978-3-642-10298-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics