Skip to main content

Constraints for Representing Transforming Entities in Bio-ontologies

  • Conference paper
AI*IA 2009: Emergent Perspectives in Artificial Intelligence (AI*IA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5883))

Included in the following conference series:

  • 809 Accesses

Abstract

Things change—develop, mature morph—but not everything in the same way. Representing this knowledge in ontologies faces issues on three fronts: what the category of the participating objects are, which type of relations they involve, and where constraints should be added. More precise distinctions can be made by using OntoClean’s properties and a novel status property that is generalised from formal temporal conceptual data modeling. Criteria are identified, formulated in 17 additional constraints, and assessed on applicability for representing transformations more accurately. This enables developers of (bio-)ontologies to represent and relate entities more precisely, such as monocyte & macrophage and healthy & unhealthy organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gene Ontology Consortium.: The Gene Ontology GO database and informatics resource. Nucleic Acids Research 32(1), D258–D261 (2004)

    Google Scholar 

  2. Rosse, C., Mejino Jr., J.L.V.: A reference ontology for biomedical informatics: the foundational model of anatomy. J. of Biomedical Informatics 36(6), 478–500 (2003)

    Article  Google Scholar 

  3. Smith, B., et al.: Relations in biomedical ontologies. Genome Biol. 46, R46 (2005)

    Article  Google Scholar 

  4. Artale, A., Parent, C., Spaccapietra, S.: Evolving objects in temporal information systems. Annals of Mathematics and Artificial Intelligence 50(1-2), 5–38 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Guarino, N., Welty, C.: A formal ontology of properties. In: Dieng, R., Corby, O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 97–112. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Guarino, N., Welty, C.: Identity, unity, and individuality: towards a formal toolkit for ontological analysis. In: Proc. of ECAI 2000. IOS Press, Amsterdam (2000)

    Google Scholar 

  7. Welty, C., Andersen, W.: Towards ontoclean 2.0: a framework for rigidity. Journal of Applied Ontology 1(1), 107–111 (2005)

    Google Scholar 

  8. Artale, A., Guarino, N., Keet, C.M.: Formalising temporal constraints on part-whole relations. In: Proc. of KR 2008, pp. 673–683. AAAI Press, Menlo Park (2008)

    Google Scholar 

  9. Guarino, N., Welty, C.: An overview of OntoClean. In: Staab, S., Studer, R. (eds.) Handbook on ontologies, pp. 151–159. Springer, Heidelberg (2004)

    Google Scholar 

  10. Noonan, H.: Identity. In: Zalta, E.N., ed.: The Stanford Encyclopedia of Philosophy. Fall 2008 edn. (2008), http://plato.stanford.edu/archives/fall2008/entries/identity/

  11. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology library. WonderWeb Deliverable D18 (ver. 1.0, 31-12-2003) (2003)

    Google Scholar 

  12. Spaccapietra, S., Parent, C., Zimanyi, E.: Modeling time from a conceptual perspective. In: Proceedings of CIKM 1998 (1998)

    Google Scholar 

  13. Yang, J.H., Sakamoto, H., Xu, E.C., Lee, R.: Biomechanical regulation of human monocyte/macrophage molecular function. Am. J. Path. 156, 1797–1804 (2000)

    Google Scholar 

  14. Hoffbrand, A.V., Pettit, J.E.: Atlas of Clinical Heamatology, 3rd edn. Elsevier, Amsterdam (2000)

    Google Scholar 

  15. Hunter, P., Borg, T.: Integration from proteins to organs: The physiome project. Nature 4(3), 237–243 (2003)

    Google Scholar 

  16. Scheuerer, B., et al.: The cxc-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages. Blood 95(4), 1158–1166 (2000)

    Google Scholar 

  17. Herre, H., Heller, B.: Ontology of time and situoids in medical conceptual modeling. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds.) AIME 2005. LNCS (LNAI), vol. 3581, pp. 266–275. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keet, C.M. (2009). Constraints for Representing Transforming Entities in Bio-ontologies. In: Serra, R., Cucchiara, R. (eds) AI*IA 2009: Emergent Perspectives in Artificial Intelligence. AI*IA 2009. Lecture Notes in Computer Science(), vol 5883. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10291-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10291-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10290-5

  • Online ISBN: 978-3-642-10291-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics