Use of Ultrasound and Computer Vision for 3D Reconstruction

  • Ruben Machucho-Cadena
  • Eduardo Moya-Sánchez
  • Sergio de la Cruz-Rodríguez
  • Eduardo Bayro-Corrochano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)


The main result of this work is an approach for reconstructing the 3D shape and pose of tumors for applications in laparoscopy from stereo endoscopic ultrasound images using Conformal Geometric Algebra. We record simultaneously stereo endoscopic and ultrasonic images and then the 3D pose of the ultrasound probe is calculated using conformal geometric algebra. When the position in 3D of the ultrasound probe is calculated, we compound multiple 2D ultrasound images into a 3D volume. To segment 2D ultrasound images we have used morphological operators and compared its performance versus the obtained with segmentation using level set methods.


Ultrasound Image Ultrasound Probe Stereo Image Good Particle Tracking Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Muller, U.: Possibilities and limitations of current stereo-endoscopy. Surg. Endosc 18, 942–947 (2004)CrossRefGoogle Scholar
  2. 2.
    Senemaud, J.: 3D-Tracking of minimal invasive instruments with a stereoendoscope. PhD thesis, Universität Karlsruhe, Karlsruhe, Germany (2008)Google Scholar
  3. 3.
    Nascimentoa, R.G., Jonathan, C., Solomon, S.B.: Current and future imaging for urologic interventions. Current Opinion in Urology 18, 116–121 (2008)CrossRefGoogle Scholar
  4. 4.
    Machucho Cadena, R., de la Cruz Rodriguez, S., Bayro Corrochano, E.: Joint freehand ultrasound and endoscopic reconstruction of brain tumors, pp. 691–698 (2008)Google Scholar
  5. 5.
    Hummel, J.B., et al.: Design and application of an assessment protocol for electromagnetic tracking systems. Medical Physics 32, 2371–2379 (2005)CrossRefGoogle Scholar
  6. 6.
    Bayro Corrochano, E., Daniilidis, K.: The dual quaternion approach to hand-eye calibration. In: International Conference on Pattern Recognition, vol. 1 (1996)Google Scholar
  7. 7.
    Shi, Y.: Object-based Dynamic Imaging with Level Set Methods. PhD thesis, Boston University, Boston, U.S.A. (2005)Google Scholar
  8. 8.
    Bayro Corrochano, E.: Geometric Computing for Perception Action Systems: Concepts, Algorithms, and Scientific Applications. Springer, Heidelberg (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ruben Machucho-Cadena
    • 1
  • Eduardo Moya-Sánchez
    • 1
  • Sergio de la Cruz-Rodríguez
    • 2
  • Eduardo Bayro-Corrochano
    • 1
  1. 1.Departamento de Ingeniería Eléctrica y Ciencias de la ComputaciónCINVESTAV, Unidad GuadalajaraJaliscoMéxico
  2. 2.Instituto Superior Politécnico “José A. Echeverría”HavanaCuba

Personalised recommendations