Multimodal Algorithm for Iris Recognition with Local Topological Descriptors

  • Sergio Campos
  • Rodrigo Salas
  • Hector Allende
  • Carlos Castro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)


This work presents a new method for feature extraction of iris images to improve the identification process. The valuable information of the iris is intrinsically located in its natural texture, and preserving and extracting the most relevant features is of paramount importance. The technique consists in several steps from adquisition up to the person identification. Our contribution consists in a multimodal algorithm where a fragmentation of the normalized iris image is performed and, afterwards, regional statistical descriptors with Self-Organizing-Maps are extracted. By means of a biometric fusion of the resulting descriptors, the features of the iris are compared and classified. The results with the iris data set obtained from the Bath University repository show an excellent accuracy reaching up to 99.867%.


Iris recognition SOM Voronoi polygons regions descriptors 


  1. 1.
    Daugman, J.: How Iris Recognition Works. IEEE Trans. on Circuits and Systems for Video Technology 14, 21–30 (2004)CrossRefGoogle Scholar
  2. 2.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, segunda edición. John Wiley & Sons Ltd, Chichester (2000)zbMATHGoogle Scholar
  3. 3.
    Ganeshan, B., Theckedath, D., Young, R., Chatwin, C.: Biometric iris recognition system using a fast and robust iris localization and alignment procedure. Optics and Lasers in Engineering 44, 1–24 (2006)CrossRefGoogle Scholar
  4. 4.
    Daugman, J.: Biometric Decision landscape. Technical report 482, University of Cambridge (2000)Google Scholar
  5. 5.
    Sanchez-Reillo, R., Sanchez-Avila, C.: Iris recognition with Low Template Size. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 324–329. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Jain, A., Ross, A., Nandakumar, K.: Handbook of Multibiometrics. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Noh, S., Bae, K., Park, K., Kim, J.: A new Iris recognition method using independent component analysis. IEICE Trans. Inf. And Syst E88-D (2005)Google Scholar
  9. 9.
    Cho, S., Kim, J.: Iris Recognition using LVQ Neural Network. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 26–33. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Neagoe, V.: New Self-Organizing Maps with Non-conventional metrics and their applications for Iris recognition and automatic translation. In: Proceedings of the 11th WSEAS International Conference on Computers (2007)Google Scholar
  11. 11.
    Toh, K., Kim, J., Lee, S.: Biometric scores fusion based on total error rate minimization. Patter Recognition 41, 1066–1082 (2008)zbMATHCrossRefGoogle Scholar
  12. 12.
    Wang, F., Han, J.: Robust Multimodal Biometric Authentication Integrating Iris, Face and Palmprint. 124X Information Technology and Control 37(4) (2008)Google Scholar
  13. 13.
    Monro, D.: Bath University iris database (2008),

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sergio Campos
    • 1
  • Rodrigo Salas
    • 2
  • Hector Allende
    • 1
  • Carlos Castro
    • 1
  1. 1.Dept. de InformáticaUniversidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.Departamento de Ingeniería BiomédicaUniversidad de ValparaísoValparaísoChile

Personalised recommendations