Advertisement

Rigid Part Decomposition in a Graph Pyramid

  • Nicole M. Artner
  • Adrian Ion
  • Walter G. Kropatsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

This paper presents an approach to extract the rigid parts of an observed articulated object. First, a spatio-temporal filtering in a video selects interest points that correspond to rigid parts. This selection is driven by the spatial relationships and the movement of the interest points. Then, a graph pyramid is built, guided by the orientation changes of the object parts in the scene. This leads to a decomposition of the scene into its rigid parts. Each vertex in the top level of the pyramid represents one rigid part in the scene.

Keywords

Interest Point Orientation Variation Foreground Object Object Part Rigid Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gavrila, D.M.: The visual analysis of human movement: A survey. CVIU 73(1), 82–980 (1999)zbMATHGoogle Scholar
  2. 2.
    Moeslund, T.B., Hilton, A., Krger, V.: A survey of advances in vision-based human motion capture and analysis. CVIU 104(2–3), 90–126 (2006)Google Scholar
  3. 3.
    Aggarwal, J.K., Cai, Q.: Human motion analysis: A review. CVIU 73(3), 428–440 (1999)Google Scholar
  4. 4.
    Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. IJCV 61(1), 55–79 (2005)CrossRefGoogle Scholar
  5. 5.
    Celasun, I., Tekalp, A.M., Gokcetekin, M.H., Harmanci, D.M.: 2-d mesh-based video object segmentation and tracking with occlusion resolution. Signal Processing: Image Communication 16(10), 949–962 (2001)CrossRefGoogle Scholar
  6. 6.
    Altunbasak, Y., Eren, P.E., Tekalp, A.M.: Region-based parametric motion segmentation using color information. Graphical Models and Image Processing 60(1), 13–23 (1998)CrossRefGoogle Scholar
  7. 7.
    Castagno, R., Ebrahimi, T., Kunt, M.: Video segmentation based on multiple features for interactive multimedia applications. Circuits and Systems for Video Technology 8(5), 562–571 (1998)CrossRefGoogle Scholar
  8. 8.
    Chen, H.T., Liu, T.L., Fuh, C.S.: Segmenting highly articulated video objects with weak-prior random forests. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 373–385. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Tekalp, A., Van Beek, P., Toklu, C., Gunsel, B.: Two-dimensional mesh-based visual-object representation for interactive synthetic/natural digital video. Proceedings of the IEEE 86(6), 1029–1051 (1998)CrossRefGoogle Scholar
  10. 10.
    Li, H., Lin, W., Tye, B., Ong, E., Ko, C.: Object segmentation with affine motion similarity measure. Multimedia and Expo, 841–844 (2001)Google Scholar
  11. 11.
    Artner, N., Ion, A., Kropatsch, W.G.: Tracking objects beyond rigid motion. In: Workshop on Graph-based Representations in PR, May 2009. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    Mármol, S.B.L., Artner, N.M., Ion, A., Kropatsch, W.G., Beleznai, C.: Video object segmentation using graphs. In: 13th Iberoamerican Congress on Pattern Recognition, September 2008, pp. 733–740. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Kropatsch, W.G.: Building irregular pyramids by dual graph contraction. Vision, Image and Signal Processing 142(6), 366–374 (1995)CrossRefGoogle Scholar
  14. 14.
    Kropatsch, W.G., Haxhimusa, Y., Pizlo, Z., Langs, G.: Vision pyramids that do not grow too high. PRL 26(3), 319–337 (2005)Google Scholar
  15. 15.
    Tuceryan, M., Chorzempa, T.: Relative sensitivity of a family of closest-point graphs in computer vision applications. Pattern Recognition 24(5), 361–373 (1991)CrossRefGoogle Scholar
  16. 16.
    Nesetril, J., Milková, E., Nesetrilová, H.: Otakar boruvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discrete Mathematics 233(1-3), 3–36 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Haxhimusa, Y., Kropatsch, W.G.: Segmentation graph hierarchies. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 343–351. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004)CrossRefGoogle Scholar
  19. 19.
    Kropatsch, W.G., Haxhimusa, Y., Ion, A.: Multiresolution Image Segmentations in Graph Pyramids. In: Applied Graph Theory in Computer Vision and Pattern Recognition. SCI, vol. 52, pp. 3–42. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Birchfeld, S.: Klt: An implementation of the kanade-lucas-tomasi feature tracker (March 2008), http://www.ces.clemson.edu/~stb/klt/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nicole M. Artner
    • 1
  • Adrian Ion
    • 2
  • Walter G. Kropatsch
    • 2
  1. 1.AIT Austrian Institute of TechnologyViennaAustria
  2. 2.PRIPVienna University of TechnologyAustria

Personalised recommendations