Dealing with Inaccurate Face Detection for Automatic Gender Recognition with Partially Occluded Faces

  • Yasmina Andreu
  • Pedro García-Sevilla
  • Ramón A. Mollineda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)


Gender recognition problem has not been extensively studied in situations where the face cannot be accurately detected and it also can be partially occluded. In this contribution, a comparison of several characterisation methods of the face is presented and they are evaluated in four different experiments that simulate the previous scenario. Two of the characterisation techniques are based on histograms, LBP and local contrast values, and the other one is a new kind of features, called Ranking Labels, that provide spatial information. Experiments have proved Ranking Labels description is the most reliable in inaccurate situations.


  1. 1.
    Rajagopalan, A.N., Rao, K.S., Kumar, Y.A.: Face recognition using multiple facial features. Pattern Recogn. Lett. 28(3), 335–341 (2007)CrossRefGoogle Scholar
  2. 2.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(12), 2037–2041 (2006)CrossRefGoogle Scholar
  3. 3.
    Brubaker, S.C., Wu, J., Sun, J., Mullin, M.D., Rehg, J.M.: On the design of cascades of boosted ensembles for face detection. Int. J. Comput. Vision 77(1-3), 65–86 (2008)CrossRefGoogle Scholar
  4. 4.
    Ai, H., Li, Y., Lao, S.: High-performance rotation invariant multiview face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(4), 671–686 (2007)CrossRefGoogle Scholar
  5. 5.
    Garcia, C., Delakis, M.: Convolutional face finder: a neural architecture for fast and robust face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(11), 1408–1423 (2004)CrossRefGoogle Scholar
  6. 6.
    Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)CrossRefGoogle Scholar
  7. 7.
    Ahonen, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  8. 8.
    Andreu, Y., Mollineda, R., García-Sevilla, P.: Gender recognition from a partial view of the face using local feature vectors. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.J. (eds.) IbPRIA 2009. LNCS, vol. 5524, pp. 481–488. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Topi, M., Timo, O., Matti, P., Maricor, S.: Robust texture classification by subsets of local binary patterns, vol. 3, pp. 935–938 (2000)Google Scholar
  10. 10.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  11. 11.
    Phillips, H., Moon, P., Rizvi, S.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. on PAMI 22(10) (2000)Google Scholar
  12. 12.
    Bradski, G.R., Kaehler, A.: Learning OpenCV. O’Reilly, Sebastopol (2008)Google Scholar
  13. 13.
    Turkowski, K.: Filters for common resampling tasks, pp. 147–165 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yasmina Andreu
    • 1
  • Pedro García-Sevilla
    • 1
  • Ramón A. Mollineda
    • 1
  1. 1.Dpto. Lenguajes y Sistemas InformáticosUniversidad Jaume ICastellón de la PlanaSpain

Personalised recommendations