Towards an Iterative Algorithm for the Optimal Boundary Coverage of a 3D Environment

  • Andrea Bottino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

This paper presents a new optimal algorithm for locating a set of sensors in 3D able to see the boundaries of a polyhedral environment. Our approach is iterative and is based on a lower bound on the sensors’ number and on a restriction of the original problem requiring each face to be observed in its entirety by at least one sensor. The lower bound allows evaluating the quality of the solution obtained at each step, and halting the algorithm if the solution is satisfactory. The algorithm asymptotically converges to the optimal solution of the unrestricted problem if the faces are subdivided into smaller parts.

Keywords

3D sensor positioning Art Gallery lower bound 

References

  1. 1.
    Bottino, A., Laurentini, A.: A Nearly Optimal Sensor Placement Algorithm for Boundary Coverage. Pattern Recognition 41(11), 3343–3355 (2008)MATHCrossRefGoogle Scholar
  2. 2.
    Scott, W.R., Roth, G.: View Planning for Automated Three-Dimensional Object Recon-struction and Inspection. ACM Computing Surveys 35(1), 64–96 (2003)CrossRefGoogle Scholar
  3. 3.
    Tarabanis, K.A., Allen, P.K., Tsai, R.Y.: A survey of sensor planning in computer vision. IEEE Trans. Robot. and Automat. 11(1), 86–104 (1995)CrossRefGoogle Scholar
  4. 4.
    Newman, T.S., Jain, A.K.: A survey of automated visual inspection. Comput. Vis. Image Understand. 61(2), 231–262 (1995)CrossRefGoogle Scholar
  5. 5.
    Roberts, D.R., Marshall, A.D.: Viewpoint Selection for Complete Surface Coverage of Three Dimensional Objects. In: Proc.of the Britsh Machine Vision Conference (1998)Google Scholar
  6. 6.
    Tarabanis, K., Tsai, R.Y., Kaul, A.: Computing occlusion-free viewpoints. IEEE Trans. Pattern Analysis and Machine Intelligence 18(3), 279–292 (1996)CrossRefGoogle Scholar
  7. 7.
    Rana, S.: Two approximate solutions to the Art Gallery Problem. In: Proc. of International Conference on Computer Graphics and Interactive Techniques (2004)Google Scholar
  8. 8.
    Fleishman, S., Cohen-Or, D., Lischinski, D.: Automatic Camera Placement for Image-Based Modeling. In: Proc. 7th Pacific Conf. on CG and Applications, pp. 12–20 (1999)Google Scholar
  9. 9.
    Bottino, A., Laurentini, A.: Optimal positioning of sensors in 3D. In: Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005. LNCS, vol. 3773, pp. 804–812. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Schiffenbauer, R.: A Survey of Aspect Graphs. Polytechnic University, Brooklyn, Technical Report TR-CIS-2001-01 (2001)Google Scholar
  11. 11.
    Woods, D.R.: An algorithm for finding a maximum clique in a graph. Operations Research Letters 21, 211–217 (1997)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Carraghan, D.R., Paradalos, P.: An exact algorithm for the maximum clique problem. Operations Research Letters 9, 375–382 (1990)MATHCrossRefGoogle Scholar
  13. 13.
    Oestergard, P.: A fast algorithm for the maximum clique problem. Discrete Applied Mathematics 120, 197–207 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Fleishman, S., Cohen-Or, D., Lischinski, D.: Automatic Camera Placement for Image-Based Modeling. In: Proc. Of 7th Pacific conf. on Computer Graphics and Applications (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrea Bottino
    • 1
  1. 1.Dipartimento di Automatica e InformaticaPolitecnico di TorinoTorinoItaly

Personalised recommendations