Advertisement

Correlation Pattern Recognition in Nonoverlapping Scene Using a Noisy Reference

  • Pablo M. Aguilar-González
  • Vitaly Kober
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

Correlation filters for recognition of a target in nonoverlapping background noise are proposed. The object to be recognized is given implicitly; that is, it is placed in a noisy reference image at unknown coordinates. For the filters design two performance criteria are used: signal-to-noise ratio and peak-to-output energy. Computer simulations results obtained with the proposed filters are discussed and compared with those of classical correlation filters in terms of discrimination capability.

Keywords

correlation filters pattern recognition 

References

  1. 1.
    VanderLugt, A.B.: Signal Detection by Complex Filtering. IEEE Trans. Inf. Theory IT 10, 139–145 (1964)CrossRefGoogle Scholar
  2. 2.
    Vijaya-Kumar, B.V.K., Mahalanobis, A., Juday, R.D.: Correlation Pattern Recognition. Cambridge University Press, Cambridge (2005)Google Scholar
  3. 3.
    Vijaya-Kumar, B.V.K., Hassebrook, L.: Performance Measures for Correlation Filters. Appl. Opt. 29, 2997–3006 (1990)CrossRefGoogle Scholar
  4. 4.
    Horner, J.L., Gianino, P.D.: Phase-Only Matched Filtering. Appl. Opt. 23, 812–816 (1984)CrossRefGoogle Scholar
  5. 5.
    Yaroslavsky, L.P.: The Theory of Optimal Methods for Localization of Objects in Pictures. In: Wolf, E. (ed.) Progress in Optics, vol. 33, pp. 145–201. Elsevier, Amsterdam (1993)Google Scholar
  6. 6.
    Javidi, B., Wang, L.: Optimum Filter for Detection of a Target in Nonoverlapping Scene Noise. Appl. Opt. 33, 4454–4458 (1994)CrossRefGoogle Scholar
  7. 7.
    Javidi, B., Wang, J.: Design of Filters to Detect a Noisy Target in Nonoverlapping Background Noise. J. Opt. Soc. Am. A 11, 2604–2612 (1994)CrossRefGoogle Scholar
  8. 8.
    Réfrégier, P., Javidi, B., Zhang, G.: Minimum Mean Square Error Filter for Pattern Recognition With Spatially Disjoint Signal and Scene Noise. Opt. 18, 1453–1455 (1993)Google Scholar
  9. 9.
    Javidi, B., Horner, J.L.: Real-Time Optical Information Processing. Academic Press, Inc., London (1994)Google Scholar
  10. 10.
    Kober, V., Campos, J.: Accuracy of Location Measurement of a Noisy Target in a Nonoverlapping Background. Journal OSA 13, 1653–1666 (1996)Google Scholar
  11. 11.
    Ramos, E.M., Kober, V.: Design of Correlation Filters for Recognition of Linearly Distorted Objects in Linearly Degraded Scenes. J. Opt. Soc. Am. A 24, 3403–3417 (2007)CrossRefGoogle Scholar
  12. 12.
    Aguilar-González, P.M., Kober, V.: Correlation Filters for Pattern Recognition Using a Noisy Reference. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 38–45. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Kober, V., Ovseyevich, A.: Phase-Only Filter with Improved Filter Efficiency and Correlation Discrimination. Pattern Recognition and Image Analysis 10, 514–519 (2000)Google Scholar
  14. 14.
    Díaz-Ramírez, V.H., Kober, V., Álvarez-Borrego, J.: Pattern Recognition With an Adaptive Joint Transform Correlator. Appl. Opt. 45, 5929–5941 (2006)CrossRefGoogle Scholar
  15. 15.
    González-Fraga, J.A., Kober, V., Álvarez-Borrego, J.: Adaptive Synthetic Discriminant Function Filters for Pattern Recognition. Opt. Eng. 45, 1–10 (2006)Google Scholar
  16. 16.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4), Article 13 (2006)Google Scholar
  17. 17.
    Pratt, W.K.: Digital Image Processing. John Wiley & Sons, Chichester (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pablo M. Aguilar-González
    • 1
  • Vitaly Kober
    • 1
  1. 1.Department of Computer ScienceCentro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMéxico

Personalised recommendations