The Representation of Chemical Spectral Data for Classification

  • Diana Porro
  • Robert W. Duin
  • Isneri Talavera
  • Noslen Hdez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)


The classification of unknown samples is among the most common problems found in chemometrics. For this purpose, a proper representation of the data is very important. Nowadays, chemical spectral data are analyzed as vectors of discretized data where the variables have not connection, and other aspects of their functional nature e.g. shape differences (structural), are also ignored. In this paper, we study some advanced representations for chemical spectral datasets, and for that we make a comparison of the classification results of 4 datasets by using their traditional representation and two other: Functional Data Analysis and Dissimilarity Representation. These approaches allow taking into account the information that is missing in the traditional representation, thus better classification results can be achieved. Some suggestions are made about the more suitable dissimilarity measures to use for chemical spectral data.


Pattern Recognition Chemometrics Classification Spectral Data Dissimilarity Representation Functional Data Analysis 


  1. 1.
    Ramsay, J.O., Silverman, B.W.: Functional Data Analysis, New York (1997)Google Scholar
  2. 2.
    Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation For Pattern Recognition. Foundations and Applications 64 (2005)Google Scholar
  3. 3.
    Cardot, H., Ferraty, F., Sarda, P.: Functional linear model. Statist. Probab. Lett. 45, 11–22 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Preda, C., Saporta, G.: PLS regression on stochastic processes. Comput. Statist. Data Anal. 48, 149–158 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cérou, F., Guyader, A.: Nearest neighbor classification in infinite dimension. ESAIM: Probability and Statistics 10, 340–350 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Villa, N., Rossi, F.: Support Vector Machine For Functional Data Classification. In: ESANN 2005 (2005)Google Scholar
  7. 7.
    Hernández, N., Biscay, R.J., Talavera, I.: Support Vector Regression Methods for Functional Data. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 564–573. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Paclik, P., Duin, R.P.W.: Classifying spectral data using relational representation. In: Spectral Imaging Workshop, Graz, Austria (2003)Google Scholar
  9. 9.
    Varmuza, K., Karlovits, M., Demuth, W.: Spectral similarity versus structural similarity: infrared spectroscopy. Anal. Chimica Acta 490, 313–324 (2003)CrossRefGoogle Scholar
  10. 10.
    Komsta, L., Skibinski, R., Grech-Baran, M., Galaszkiewicz, A.: Multivariate comparison of drugs UV spectra by hierarchical cluster analysis-comparison of different dissimilarity functions. In: Annales Universitaits Marie Curie-Sklodowska, Lublin, Polonia, vol. 20, pp. 2–13 (2007)Google Scholar
  11. 11.
    Wold, S.: Chemometrics: Theory and Application. In: Kowalski, B.R. (ed.) ACS Symposium, vol. 52, pp. 243–282 (1977)Google Scholar
  12. 12.
    Yuhas, R.H., Goetz, A.F.H., Boardman, J.W.: Discrimination among semiarid landscape end members using the spectral angle mapper (SAM) algorithm. In: Third Annual JPL Airborne Geoscience Workshop, Pasadena, CA, pp. 147–149 (1992)Google Scholar
  13. 13.
    Pekalska, E., Duin, R.P.W.: Prototype selection for finding efficient representations of dissimilarity data. In: Kasturi, R., Laurendeau, D., Suen, C. (eds.) International Conference on Pattern Recognition, Quebec, Canada, vol. 3, pp. 37–40 (2002)Google Scholar
  14. 14.
  15. 15.
  16. 16.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Diana Porro
    • 1
    • 2
  • Robert W. Duin
    • 2
  • Isneri Talavera
    • 1
  • Noslen Hdez
    • 1
  1. 1.Advanced Technologies Application CentreCuba
  2. 2.Pattern Recognition GroupTU DelftThe Netherlands

Personalised recommendations