Analysis of the GRNs Inference by Using Tsallis Entropy and a Feature Selection Approach

  • Fabrício M. Lopes
  • Evaldo A. de Oliveira
  • Roberto M. CesarJr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)


An important problem in the bioinformatics field is to understand how genes are regulated and interact through gene networks. This knowledge can be helpful for many applications, such as disease treatment design and drugs creation purposes. For this reason, it is very important to uncover the functional relationship among genes and then to construct the gene regulatory network (GRN) from temporal expression data. However, this task usually involves data with a large number of variables and small number of observations. In this way, there is a strong motivation to use pattern recognition and dimensionality reduction approaches. In particular, feature selection is specially important in order to select the most important predictor genes that can explain some phenomena associated with the target genes. This work presents a first study about the sensibility of entropy methods regarding the entropy functional form, applied to the problem of topology recovery of GRNs. The generalized entropy proposed by Tsallis is used to study this sensibility. The inference process is based on a feature selection approach, which is applied to simulated temporal expression data generated by an artificial gene network (AGN) model. The inferred GRNs are validated in terms of global network measures. Some interesting conclusions can be drawn from the experimental results, as reported for the first time in the present paper.


Tsallis entropy feature selection inference validation gene regulatory networks bioinformatics 


  1. 1.
    Hovatta, I., et al.: DNA microarray data analysis, 2nd edn. CSC, Scientific Computing Ltd. (2005)Google Scholar
  2. 2.
    Liang, S., Fuhrman, S., Somogyi, R.: Reveal: a general reverse engineering algorithm for inference of genetic network architectures. In: PSB, pp. 18–29 (1998)Google Scholar
  3. 3.
    Weaver, D.C., et al.: Modeling regulatory networks with weight matrices. In: PSB, pp. 112–123 (1999)Google Scholar
  4. 4.
    Butte, A., Kohane, I.: Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In: PSB, pp. 418–429 (2000)Google Scholar
  5. 5.
    Keles, S., van-der Laan, M., Eisen, M.B.: Identification of regulatory elements using a feature selection method. Bioinformatics 18(9), 1167–1175 (2002)CrossRefGoogle Scholar
  6. 6.
    Shmulevich, I., et al.: Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Barrera, J., et al.: 2. In: Constructing probabilistic genetic networks of Plasmodium falciparum from dynamical expression signals of the intraerythrocytic development cycle, pp. 11–26. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Margolin, A.A., et al.: Aracne: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(suppl. 1) (2006)Google Scholar
  9. 9.
    Faith, J., et al.: Large-scale mapping and validation of escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology 5(1), 259–265 (2007)CrossRefGoogle Scholar
  10. 10.
    Meyer, P.E., Kontos, K., Lafitte, F., Bontempi, G.: Information-theoretic inference of large transcriptional regulatory networks. EURASIP Journal on Bioinformatics and Systems Biology, 1–9 (2007)Google Scholar
  11. 11.
    Zhao, W., Serpedin, E., Dougherty, E.R.: Inferring connectivity of genetic regulatory networks using information-theoretic criteria. IEEE/ACM Trans. on Comput. Biology and Bioinformatics 5(2), 262–274 (2008)CrossRefGoogle Scholar
  12. 12.
    Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics 52(1), 479–487 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lopes, F.M., Cesar-Jr, R.M., Costa, L.F.: AGN simulation and validation model. In: Bazzan, A.L.C., Craven, M., Martins, N.F. (eds.) BSB 2008. LNCS (LNBI), vol. 5167, pp. 169–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Issue, S.: Nonextensive statistical mechanics: new trends, new perspectives. Europhysics News 36(6), 185–231 (2005)CrossRefGoogle Scholar
  16. 16.
    Abe, S.: Tsallis entropy: how unique? Cont. Mech. Therm. 16(3), 237–244 (2004)zbMATHCrossRefGoogle Scholar
  17. 17.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)CrossRefGoogle Scholar
  18. 18.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Costa, L.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of complex networks: a survey of measurements. Adv. in Phys. 56(1), 167–242 (2007)CrossRefGoogle Scholar
  20. 20.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed nets. Journal of Theoretical Biology 22(3), 437–467 (1969)CrossRefGoogle Scholar
  21. 21.
    Lopes, F.M., Martins-Jr, D.C., Cesar-Jr, R.M.: Comparative study of GRN’s inference methods based on feature selection by mutual information. In: GENSIPS, pp. 1–4. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  22. 22.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chichester (2000)Google Scholar
  23. 23.
    Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recogn. Lett. 15(11), 1119–1125 (1994)CrossRefGoogle Scholar
  24. 24.
    Lopes, F.M., Martins-Jr, D.C., Cesar-Jr, R.M.: Feature selection environment for genomic applications. BMC Bioinformatics 9(451), 1–21 (2008)Google Scholar
  25. 25.
    Tsallis, C.: Nonextensive Statistical Mechanics and its Applications. Lecture Notes in Physics. Springer, Heidelberg (2001)Google Scholar
  26. 26.
    Velazquez, L., Guzmán, F.: Remarks about the Tsallis formalism. Phys. Rev. E 65(4), 046134.1–046134.5 (2002)CrossRefGoogle Scholar
  27. 27.
    Tsallis, C.: Nonadditive entropy: the concept and its use. The European Physical Journal A 40(3), 257–266 (2009)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Costa, L.F., et al.: Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Systems Biology 1, 1–16 (2007)CrossRefGoogle Scholar
  29. 29.
    Dougherty, E.R.: Validation of inference procedures for gene regulatory networks. Current Genomics 8(6), 351–359 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Fabrício M. Lopes
    • 1
    • 2
  • Evaldo A. de Oliveira
    • 1
  • Roberto M. CesarJr
    • 1
  1. 1.Institute of Mathematics and StatisticsUniversity of São PauloBrazil
  2. 2.Federal University of TechnologyParanáBrazil

Personalised recommendations