Coding Long Contour Shapes of Binary Objects

  • Hermilo Sánchez-Cruz
  • Mario A. Rodríguez-Díaz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)


This is an extension of the paper appeared in [15]. This time, we compare four methods: Arithmetic coding applied to 3OT chain code (Arith-3OT), Arithmetic coding applied to DFCCE (Arith-DFCCE), Huffman coding applied to DFCCE chain code (Huff-DFCCE), and, to measure the efficiency of the chain codes, we propose to compare the methods with JBIG, which constitutes an international standard. In the aim to look for a suitable and better representation of contour shapes, our probes suggest that a sound method to represent contour shapes is 3OT, because Arithmetic coding applied to it gives the best results regarding JBIG, independently of the perimeter of the contour shapes.


Efficiency Arithmetic coding Chain code Contour Shapes Binary objects 


  1. 1.
    Mckee, J.W., Aggarwal, J.K.: Computer recognition of partial views of curved objects. IEEE Transactions on Computers C-26, 790–800 (1977)CrossRefGoogle Scholar
  2. 2.
    Hoque, S., Sirlantzis, K., Fairhurst, M.C.: A New Chain-code Quantization Approach Enabling High Performance Handwriting Recognition based on Multi-Classifier Schemes, ICDAR. In: Seventh International Conference on Document Analysis and Recognition (ICDAR 2003), vol. 2, p. 834 (2003)Google Scholar
  3. 3.
    Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Transactions on Electronic Computers EC-10, 260–268 (1961)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Sánchez-Cruz, H.: A Proposal Method for Corner Detection with an Orthogonal Three-direction Chain Code. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 161–172. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Salem, M., Sewisy, A., Elyan, U.: A Vertex Chain Code Approach for Image Recognition. ICGST International Journal on Graphics, Vision and Image Processing 5(3) (2005)Google Scholar
  6. 6.
    Sánchez-Cruz, H., Rodríguez-Dagnino, R.M.: Compressing bi-level images by means of a 3-bit chain code. Optical Engineering 44(9), 097004 (2005)CrossRefGoogle Scholar
  7. 7.
    Liu, Y.K., Žalik, B.: And efficient chain code with Huffman coding. Pattern Recognition 38(4), 553–557 (2005)CrossRefGoogle Scholar
  8. 8.
    Liu, Y.K., Wei, W., Wanga, P.J., Žalik, B.: Compressed vertex chain codes. Pattern Recognition 40, 2908–2913 (2007)zbMATHCrossRefGoogle Scholar
  9. 9.
    Bribiesca, E.: A new chain code. Pattern Recognition 32(2), 235–251 (1999)CrossRefGoogle Scholar
  10. 10.
    Rytter, W.: Compressed and fully compressed pattern matching in one and two dimensions. Proc. IEEE 88(11), 1769–1778 (2000)CrossRefGoogle Scholar
  11. 11.
    Farach, M., Thorup, M.: String matching in Lempel-Ziv compressing strings. In: Proc. 27th Annu. Symp. Theory Computing, pp. 703–712 (1995)Google Scholar
  12. 12.
    Aguinaga, L.E., Neri-Calderón, R.A., Rodríguez-Dagnino, R.M.: Compression rates comparison of entropy coding for three-bit chain codes of bilevel images. Optical Engineering 46(8), 087007 (2007)CrossRefGoogle Scholar
  13. 13.
    Sanchez-Cruz, H., Lopez-Cruces, M., Puga, H.: A Proposal Modification of the 3OT Chain Code. In: Thalmann, D. (ed.) Computer Graphics and Imaging, vol. 10, 300 pages, pp. 6–11. Acta Press (2008), A Publication of the International Association of Science and Technology for Development. ISBN: 978-0-88986-719-2Google Scholar
  14. 14.
    Huffman, M.: Lossless bilevel image compression. In: Sayood, K. (ed.) Lossless Compression Handbook. Academic Press, New York (2003)Google Scholar
  15. 15.
    Sanchez-Cruz, H., Bribiesca, E., Rodriguez-Dagnino, R.M.: Efficiency of chain codes to represent binary objects. Pattern Recognition 40(6), 1660–1674 (2007)zbMATHCrossRefGoogle Scholar
  16. 16.
    Howard, P., Kossentini, F., Martins, B., Forchhammer, S., Rucklidge, W.: The emerging JBIG2 standard. IEEE Transactions on Circuits and Systems for Video Technology 8(7), 838–848 (1998)CrossRefGoogle Scholar
  17. 17.
    Ono, F., Rucklidge, W., Arps, R., Constantinescu, C.: JBIG2-the ultimate bi-level image coding standard. In: Proceedings International Conference on Image Processing, Vancouver, BC, Canada, vol. 1, pp. 140–143 (2000)Google Scholar
  18. 18.
    Freeman, H.: Computer Processing of Line-Drawing Images. ACM Computing Surveys (CSUR) 6(1), 57–97 (1974)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hermilo Sánchez-Cruz
    • 1
  • Mario A. Rodríguez-Díaz
    • 1
  1. 1.Departmento de Sistemas Electrónicos. Centro de Ciencias BásicasUniversidad Autónoma de AguascalientesAguascalientes, Ags.México

Personalised recommendations