Getting Topological Information for a 80-Adjacency Doxel-Based 4D Volume through a Polytopal Cell Complex

  • Ana Pacheco
  • Pedro Real
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

Given an 80-adjacency doxel-based digital four-dimensional hypervolume V, we construct here an associated oriented 4–dimensional polytopal cell complex K(V), having the same integer homological information (that related to n-dimensional holes that object has) than V. This is the first step toward the construction of an algebraic-topological representation (AT-model) for V, which suitably codifies it mainly in terms of its homological information. This AT-model is especially suitable for global and local topological analysis of digital 4D images.

Keywords

4–polytope algebraic topological model cartesian product cell complex integral operator orientation 

References

  1. 1.
    Couprie, M., Bertrand, G.: New Characterizations of Simple Points in 2D, 3D and 4D Discrete Spaces. IEEE Trans. Pattern Analysis and Machine Intelligence 31, 637–648 (2009)CrossRefGoogle Scholar
  2. 2.
    Delfinado, C.J.A., Edelsbrunner, H.: An Incremental Algorithm for Betti Numbers of Simplicial Complexes on the 3–Sphere. Computer Aided Geometric Design 12, 771–784 (1995)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dey, T.K., Guha, S.: Computing Homology Groups of Simplicial Complexes in ℝ3. Journal of the ACM 45, 266–287 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Forman, R.: A Discrete Morse Theory for Cell Complexes. In: Yau, S.T. (ed.) Geometry, Topology & Physics for Raoul Bott, pp. 112–125. International Press (1995)Google Scholar
  5. 5.
    Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B., Molina-Abril, H., Real, P.: Integral Operators for Computing Homology Generators at Any Dimension. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 356–363. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Gonzalez-Diaz, R., Jimenez, M.J., Medrano, B., Real, P.: Chain homotopies for object topological representations. Discrete Applied Mathematics 157, 490–499 (2009)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gonzalez-Diaz, R., Real, P.: On the cohomology of 3D digital images. Discrete Applied Mathematics 147, 245–263 (2005)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gonzalez-Diaz, R., Medrano, B., Real, P., Sanchez-Pelaez, J.: Algebraic Topological Analysis of Time-sequence of Digital Images. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 208–219. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)Google Scholar
  10. 10.
    Kenmochi, Y., Imiya, A.: Discrete Polyhedrization of a Lattice Point Set. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 150–162. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Kenmochi, Y., Imiya, A., Ichikawa, A.: Discrete Combinatorial Geometry. LNCS, vol. 30, pp. 1719–1728. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Kenmochi, Y., Imiya, A., Ichikawa, A.: Boundary Extraction of Discrete Objects. Computer Vision and Image Understanding 71, 281–293 (1998)CrossRefGoogle Scholar
  13. 13.
    Kong, T.Y., Roscoe, A.W., Rosenfeld, A.: Concepts of Digital Topology. Topology and its Applications 46, 219–262 (1992)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kovalevsky, V.A.: Finite Topology as Applied to Image Analysis. Computer Vision, Graphics, and Image Processing 46, 141–161 (1989)CrossRefGoogle Scholar
  15. 15.
    Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational homology. Series Applied Mathematical Sciences, vol. 157. Springer, Heidelberg (2004)MATHGoogle Scholar
  16. 16.
    Lee, M., De Floriani, L., Samet, H.: Constant-Time Navigation in Four-Dimensional Nested Simplicial Meshes. In: Proc. International Conference on Shape Modeling and Applications, pp. 221–230 (2004)Google Scholar
  17. 17.
    Mari, J.L., Real, P.: Simplicialization of Digital Volumes in 26-Adjacency: Application to Topological Analysis. Pattern Recognition and Image Analysis 19, 231–238 (2009)Google Scholar
  18. 18.
    May, J.P.: Simplicial Objects in Algebraic Topology. University of Chicago Press, Chicago (1967)Google Scholar
  19. 19.
    Molina-Abril, H., Real, P.: Advanced homological computation of digital volumes via cell complexes. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 361–371. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Molina-Abril, H., Real, P.: Cell AT-models for digital volumes. In: Torsello, A., Fscolano, F., Brun, L. (eds.) GBRPR 2009. LNCS, vol. 5534, pp. 314–323. Springer, Heidelberg (2009)Google Scholar
  21. 21.
    Molina-Abril, H., Real, P.: Homological Computation using Spanning Trees. In: CIARP 2009, Guadalajara, Mexico (2009)Google Scholar
  22. 22.
    Mrozek, M., Pilarczykand, P., Zelazna, N.: Homology algorithm based on acyclic subspace. Computers and Mathematics with Applications 55, 2395–2412 (2008)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Pacheco, A., Real, P.: Polyhedrization, homology and orientation. In: Wiederhold, P., Barneva, R.P. (eds.) Progress in Combinatorial Image Analysis, pp. 153–167. Research Publishing Services (2009)Google Scholar
  24. 24.
    Real, P., Molina-Abril, H., Kropatsch, W.: Homological tree-based strategies for image analysis. In: Computer Analysis and Image Patterns, CAIP (2009) (accepted)Google Scholar
  25. 25.
    Skapin, X., Lienhardt, P.: Using Cartesian Product for Animation. Journal of Visualization and Computer Animation 12, 131–144 (2001)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ana Pacheco
    • 1
  • Pedro Real
    • 1
  1. 1.Dpto. Matematica Aplicada I, E.T.S.I. InformaticaUniversidad de SevillaSevillaSpain

Personalised recommendations