Advertisement

Optimizations and Performance of a Robotics Grasping Algorithm Described in Geometric Algebra

  • Florian Wörsdörfer
  • Florian Stock
  • Eduardo Bayro-Corrochano
  • Dietmar Hildenbrand
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

The usage of Conformal Geometric Algebra leads to algorithms that can be formulated in a very clear and easy to grasp way. But it can also increase the performance of an implementation because of its capabilities to be computed in parallel. In this paper we show how a grasping algorithm for a robotic arm is accelerated using a Conformal Geometric Algebra formulation. The optimized C code is produced by the CGA framework Gaalop automatically. We compare this implementation with a CUDA implementation and an implementation that uses standard vector algebra.

Keywords

Conformal Geometric Algebra Robot Grasping CUDA Runtime Performance 

References

  1. 1.
    Ablamowicz, R., Fauser, B.: The homepage of the package Cliffordlib. HTML document (2005), http://math.tntech.edu/rafal/cliff9/ (last revised September 17, 2005)
  2. 2.
    Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.: Brook for gpus: Stream computing on graphics hardware. ACM Transactions on Graphics 23, 777–786 (2004)CrossRefGoogle Scholar
  3. 3.
    Davies, R.B.: Newmat c++ matrix library. HTML document (2006), http://www.robertnz.net/nm_intro.htm
  4. 4.
    Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science, An Object-Oriented Approach to Geometry. Morgan Kaufman, San Francisco (2007)Google Scholar
  5. 5.
    Hildenbrand, D.: Geometric computing in computer graphics using conformal geometric algebra. Computers & Graphics 29(5), 802–810 (2005)CrossRefGoogle Scholar
  6. 6.
    Hildenbrand, D., Bayro-Corrochano, E., Zamora, J.: Inverse kinematics computation in computer graphics and robotics using conformal geometric algebra. In: Advances in Applied Clifford Algebras. Birkhäuser, Basel (2008)Google Scholar
  7. 7.
    Hildenbrand, D., Fontijne, D., Perwass, C., Dorst, L.: Tutorial geometric algebra and its application to computer graphics. In: Eurographics conference Grenoble (2004)Google Scholar
  8. 8.
    Hildenbrand, D., Pitt, J.: The Gaalop home page. HTML document (2008), http://www.gaalop.de
  9. 9.
    Hildenbrand, D.: Home page. HTML document (2009), http://www.gris.informatik.tu-darmstadt.de/~dhilden/
  10. 10.
    Khronos Group. OpenCL Specification 1.0 (June 2008)Google Scholar
  11. 11.
    McCool, M.D.: Data-Parallel Programming on the Cell BE and the GPU using the RapidMind Development Platform, Rapidmind (2006)Google Scholar
  12. 12.
    NVIDIA Corp. NVIDIA CUDA Compute Unified Device Architecture – Programming Guide (June 2007)Google Scholar
  13. 13.
    Perwass, C.: The CLU home page. HTML document (2008), http://www.clucalc.info

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Florian Wörsdörfer
    • 1
  • Florian Stock
    • 2
  • Eduardo Bayro-Corrochano
    • 3
  • Dietmar Hildenbrand
    • 1
  1. 1.Graphical Interactive Systems GroupTechnische Universität DarmstadtGermany
  2. 2.Embedded Systems and Applications GroupTechnische Universität DarmstadtGermany
  3. 3.CINVESTAVGuadalajaraMexico

Personalised recommendations