Advertisement

Airway Tree Segmentation from CT Scans Using Gradient-Guided 3D Region Growing

  • Anna Fabijańska
  • Marcin Janaszewski
  • Michał Postolski
  • Laurent Babout
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

In this paper a new approach to CT based investigation of pulmonary airways is introduced. Especially a new - fully automated algorithm for airway tree segmentation is proposed. The algorithm is based on 3D seeded region growing. However in opposite to traditional approaches region growing is applied twice: firstly – for detecting main bronchi, secondly – for localizing low order parts of the airway tree. The growth of distal parts of the airway tree is driven by a map constructed on the basis of morphological gradient.

Keywords

CT airway tree image segmentation 3D region growing 

References

  1. 1.
    American Thoracic Society: Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. Am. J. Resp. Crit. Care Med. 152, S77–S121 (1995)Google Scholar
  2. 2.
    Berger, P., Perot, V., Desbarats, P., Tunon-de-Lara, J.M., Marthan, R., Laurent, F.: Airway wall thickness in cigarette smokers: quantitative thin-section CT assessment. Radiology 235(3), 1055–1064 (2005)CrossRefGoogle Scholar
  3. 3.
    Reilly, J.: Using computed tomographic scanning to advance understanding of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 3(5), 450–455 (2006)CrossRefGoogle Scholar
  4. 4.
    Felita, C., Prêteux, F., Beigelman-Aubry, C., Grenier, P.: Pulmonary airways: 3-D reconstruction from multislice CT and clinical investigation. IEEE Trans. Med. Imag. 23(11), 1353–1364 (2004)CrossRefGoogle Scholar
  5. 5.
    Graham, M., Gibbs, J., Higgins, W.: Robust system for human airway-tree segmentation. In: Proc. SPIE, vol. 6914, pp. 69141J-1 – 69141J-18 (2008)Google Scholar
  6. 6.
    Busayarat, S., Zrimec, T.: Detection of bronchopulmonary segments on high-resolution CT-preliminary results. In: 20th IEEE Int. Symp. Computer-Based Medical Systems, pp. 199–204 (2007)Google Scholar
  7. 7.
    Sonka, M., Park, W., Hoffman, E.: Rule-based detection of intrathoracic airway trees. IEEE Trans. Med. Imag. 15(3), 314–326 (1996)CrossRefGoogle Scholar
  8. 8.
    Brown, M., McNitt, M., Mankovich, N., Goldin, J., Aberle, D.: Knowledge-based automated technique for measuring total lung volume from CT. In: Proc. SPIE, vol. 2709, pp. 63–74 (1996)Google Scholar
  9. 9.
    Aykac, D., Hoffman, E., McLennan, G., Reinhardt, J.: Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Trans. Med. Imag. 22(8), 940–950 (2003)CrossRefGoogle Scholar
  10. 10.
    Pisupati, C., Wolf, L., Mitzner, W., Zerhouni, E.: Segmentation of 3D pulmonary trees using mathematical morphology. In: Mathematical morphology and its applications to image and signal processing, pp. 409–416. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  11. 11.
    Wood, S., Zerhouni, A., Hoffman, E., Mitzner, W.: Measurement of three-dimensional lung tree structures using computed tomography. J. Appl. Physiol. 79(5), 1687–1697 (1995)Google Scholar
  12. 12.
    Mayer, D., Bartz, D., Ley, S., Thust, S., Heussel, C., Kauczor, H., Straßer, W.: Segmentation and virtual exploration of tracheobronchial trees. In: 17th Int. Cong. and Exhibition Computer Aided Radiology and Surgery, London, UK, pp. 35–40 (2003)Google Scholar
  13. 13.
    Chabat, F., Xiao-Peng, H., Hansell, D., Guang-Zhong, Y.: ERS transform for the automated detection of bronchial abnormalities on CT of the lungs. IEEE Trans. Med. Imag. 20(9), 942–952 (2001)CrossRefGoogle Scholar
  14. 14.
    Strzecha, K., Fabijańska, A., Sankowski, D.: Segmentation algorithms for industrial image quantitative analysis system. In: 17th IMEKO World Congress Metrology for a Sustainable Development, p. 164. Rio de Janeiro, Brazil (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Anna Fabijańska
    • 1
  • Marcin Janaszewski
    • 1
  • Michał Postolski
    • 1
  • Laurent Babout
    • 1
  1. 1.Computer Engineering DepartmentTechnical University of LodzLodzPoland

Personalised recommendations