Advertisement

Challenges and Opportunities for Extracting Cardiovascular Risk Biomarkers from Imaging Data

  • I. A. Kakadiaris
  • E. G. Mendizabal-Ruiz
  • U. Kurkure
  • M. Naghavi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

Complications attributed to cardiovascular diseases (CDV) are the leading cause of death worldwide. In the United States, sudden heart attack remains the number one cause of death and accounts for the majority of the $280 billion burden of cardiovascular diseases. In spite of the advancements in cardiovascular imaging techniques, the rate of deaths due to unpredicted heart attack remains high. Thus, novel computational tools are of critical need, in order to mine quantitative parameters from the imaging data for early detection of persons with a high likelihood of developing a heart attack in the near future (vulnerable patients). In this paper, we present our progress in the research of computational methods for the extraction of cardiovascular risk biomarkers from cardiovascular imaging data. In particular, we focus on the methods developed for the analysis of intravascular ultrasound (IVUS) data.

Keywords

vulnerable patients intravascular ultrasound vasa vasorum 

References

  1. 1.
    Naghavi, M., Libby, P., Falk, E., Casscells, S., Litovsky, S., Rumberger, J., Badimon, J., Stefanadis, C., Moreno, P., Pasterkamp, G., Fayad, Z., Stone, P., Waxman, S., Raggi, P., Madjid, M., Zarrabi, A., Burke, A., Yuan, C., Fitzgerald, P., Siscovick, D., de Korte, C., Aikawa, M., Airaksinen, K., Assmann, G., Becker, C., Chesebro, J., Farb, A., Galis, Z., Jackson, C., Jang, I., Koenig, W., Lodder, R., March, K., Demirovic, J., Navab, M., Priori, S., Rekhter, M., Bahr, R., Grundy, S., Mehran, R., Colombo, A., Boerwinkle, E., Ballantyne, C., Insull, J., Schwartz, W.R., Vogel, R., Serruys, P., Hansson, G., Faxon, D., Kaul, S., Drexler, H., Greenland, P., Muller, J., Virmani, R., Ridker, P., Zipes, D., Shah, P., Willerson, J.: From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part I. Circulation 108(14), 1664–1672 (2003)CrossRefGoogle Scholar
  2. 2.
    Greenland, P., LaBree, L., Azen, S., Doherty, T., Detrano, R.: Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. Journal of the American Medical Association 291(2), 210–215 (2004)CrossRefGoogle Scholar
  3. 3.
    Shaw, L., Raggi, P., Schisterman, E., Berman, D., Callister, T.: Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 228(3), 826–833 (2003)CrossRefGoogle Scholar
  4. 4.
    Taylor, A., Bindeman, J., Feuerstein, I., Cao, F., Brazaitis, M., O’Malley, P.: Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: Mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. Journal of the American College of Cardiology 46(5), 807–814 (2005)CrossRefGoogle Scholar
  5. 5.
    Wong, N.D., Budoff, M.J., Pio, J., Detrano, R.C.: Coronary calcium and cardiovascular event risk: Evaluation by age- and sex-specific quartiles. American Heart Journal 143(3), 456–459 (2002)CrossRefGoogle Scholar
  6. 6.
    Gossl, M., Malyar, N., Rosol, M., Beighley, P., Ritman, E.: Impact of coronary vasa vasorum functional structure on coronary vessel wall perfusion distribution. American Journal of Physiology - Heart and Circulatory Physiology 285(5), H2019–H2026 (2003)Google Scholar
  7. 7.
    Brunner, G., Chittajallu, D., Kurkure, U., Kakadiaris, I.: Toward the automatic detection of coronary artery regions in non-contrast Computed Tomography data. International Journal of Cardiovascular Imaging (in press, 2009)Google Scholar
  8. 8.
    Brunner, G., Chittajallu, D., Kurkure, U., Kakadiaris, I.: A heart-centered coordinate system for the detection of coronary artery zones in non-contrast Computed Tomography data. In: Proc. Medical Image Computing and Computer-Assisted Intervention Workshop on Computer Vision for Intravascular and Intracardiac Imaging, New York, NY, September 10 (2008)Google Scholar
  9. 9.
    Kurkure, U., Chittajallu, D., Brunner, G., Yalamanchili, R., Kakadiaris, I.: A supervised classification-based method for coronary calcium detection in non-contrast CT. International Journal of Cardiovascular Imaging (in press, 2009)Google Scholar
  10. 10.
    Kurkure, U., Chittajallu, D., Brunner, G., Yalamanchili, R., Kakadiaris, I.: Detection of coronary calcifications using supervised hierarchical classification. In: Proc. Medical Image Computing and Computer-Assisted Intervention Workshop on Computer Vision for Intravascular and Intracardiac Imaging, New York, NY, September 10 (2008)Google Scholar
  11. 11.
    Brunner, G., Kurkure, U., Chittajallu, D., Yalamanchili, R., Kakadiaris, I.: Toward unsupervised classification of calcified arterial lesions. In: Proc. 11th International Conference on Medical Image Computing and Computer Assisted Intervention, New York, NY, September 6-9, pp. 144–152 (2008)Google Scholar
  12. 12.
    Chittajallu, D., Balanca, P., Kakadiaris, I.: Automatic delineation of the inner thoracic region in non-contrast CT data. In: Proc. 31st International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, September 2-6 (2009)Google Scholar
  13. 13.
    Kurkure, U., Avila-Montes, O., Kakadiaris, I.: Automated segmentation of thoracic aorta in non-contrast CT images. In: Proc. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, May 14-17 (2008)Google Scholar
  14. 14.
    Pednekar, A., Kurkure, U., Kakadiaris, I., Muthupillai, R., Flamm, S.: Left ventricular segmentation in MR using hierarchical multi-class multi-feature fuzzy connectedness. In: Proc. 7th International Conference on Medical Image Computing and Computer Assisted Intervention, Rennes, Saint-Malo, France, September 26-30, pp. 402–410 (2004)Google Scholar
  15. 15.
    O’Malley, S., Vavuranakis, M., Naghavi, M., Kakadiaris, I.: Intravascular ultrasound-based imaging of vasa vasorum for the detection of vulnerable atherosclerotic plaque. In: Proc. Medical Image Computing and Computer-Assisted Intervention, Palm Springs, CA, October, pp. 343–351 (2005)Google Scholar
  16. 16.
    O’Malley, S., Naghavi, M., Kakadiaris, I.: One-class acoustic characterization applied to blood detection in IVUS. In: Proc. 10th International Conference on Medical Image Computing and Computer Assisted Intervention, Brisbane, Australia, October 29 - November 2, pp. 202–209 (2007)Google Scholar
  17. 17.
    Papaioannou, T., Vavuranakis, M., Androulakis, A., Lazaros, G., Kakadiaris, I., Vlaseros, I., Naghavi, M., Kallikazaros, I., Stefanadis, C.: In-vivo imaging of carotid plaque neoangiogenesis with contrast-enhanced harmonic ultrasound. International Journal of Cardiology 134(3), 110–112 (2009)CrossRefGoogle Scholar
  18. 18.
    Vavuranakis, M., Kakadiaris, I., O’Malley, S., Papaioannou, T., Sanidas, E., Naghavi, M., Carlier, S., Tousoulis, D., Stefanadis, C.: A new method for assessment of plaque vulnerability based on vasa vasorum imaging, by using contrast-enhanced intravascular ultrasound and automated differential image analysis. International Journal of Cardiology 130, 23–29 (2008)CrossRefGoogle Scholar
  19. 19.
    Vavuranakis, M., Kakadiaris, I., O’Malley, S., Papaioannou, T., Carlier, S., Naghavi, M., Stefanadis, C.: Contrast-enhanced intravascular ultrasound: Combining morphology with activity-based assessment of plaque vulnerability. Expert Review of Cardiovascular Therapy 5, 915–917 (2007)CrossRefGoogle Scholar
  20. 20.
    Vavuranakis, M., Papaioannou, T., Kakadiaris, I., O’Malley, S., Naghavi, M., Filis, K., Sanidas, E., Papalois, A., Stamatopoulos, I., Stefanadis, C.: Detection of perivascular blood flow in vivo by contrast-enhanced intracoronary ultrasonography and image analysis: An animal study. Clinical and Experimental Pharmacology and Physiology 34(12), 1319–1323 (2007)CrossRefGoogle Scholar
  21. 21.
    Mendizabal-Ruiz, E., Kakadiaris, I.: One-class acoustic characterization applied to contrast agent detection in IVUS. In: Proc. Medical Image Computing and Computer-Assisted Intervention Workshop on Computer Vision for Intravascular and Intracardiac Imaging, New York, NY, September 10 (2008)Google Scholar
  22. 22.
    Fontaine, I., Bertrand, M., Cloutier, G.: A system-based approach to modeling the ultrasound signal backscattered by red blood cells. Biophysical Journal 77(5), 2387–2399 (1999)CrossRefGoogle Scholar
  23. 23.
    Mendizabal-Ruiz, E., Biros, G., Kakadiaris, I.: An inverse scattering algorithm for the segmentation of the luminal border on intravascular ultrasound data. In: Proc. 12th International Conference on Medical Image Computing and Computer Assisted Intervention, London, UK, September 20-24 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • I. A. Kakadiaris
    • 1
  • E. G. Mendizabal-Ruiz
    • 1
  • U. Kurkure
    • 1
  • M. Naghavi
    • 2
  1. 1.Computational Biomedicine Lab, Departments of Computer Science, Electrical and Computer Engineering, and Biomedical EngineeringUniversity of HoustonHouston
  2. 2.Society for Heart Attack Prevention and Eradication (SHAPE)Houston

Personalised recommendations