Advertisement

A Study on Representations for Face Recognition from Thermal Images

  • Yenisel Plasencia
  • Edel García-Reyes
  • Robert P. W. Duin
  • Heydi Mendez-Vazquez
  • César San-Martin
  • Claudio Soto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

Two challenges of face recognition at a distance are the uncontrolled illumination and the low resolution of the images. One approach to tackle the first limitation is to use longwave infrared face images since they are invariant to illumination changes. In this paper we study classification performances on 3 different representations: pixel-based, histogram, and dissimilarity representation based on histogram distances for face recognition from low resolution longwave infrared images. The experiments show that the optimal representation depends on the resolution of images and histogram bins. It was also observed that low resolution thermal images joined to a proper representation are sufficient to discriminate between subjects and we suggest that they can be promising for applications such as face tracking.

Keywords

face recognition dissimilarity representations thermal infrared 

References

  1. 1.
    Socolinsky, D.A., Selinger, A.: A comparative analysis of face recognition performance with visible and thermal infrared imagery. In: ICPR 2002, Washington, DC, USA, vol. 4, p. 40217. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  2. 2.
    Bebis, G., Gyaourova, A., Singh, S., Pavlidis, I.: Face recognition by fusing thermal infrared and visible imagery. Image Vision Comput. 24(7), 727–742 (2006)CrossRefGoogle Scholar
  3. 3.
    Heo, J.: Fusion of visual and thermal face recognition techniques: A comparative study. University of Tennessee (2005)Google Scholar
  4. 4.
    Kong, S.G., Heo, J., Abidi, B.R., Paik, J., Abidi, M.A.: Recent advances in visual and infrared face recognition - a review. Computer Vision and Image Understanding 97, 103–135 (2005)CrossRefGoogle Scholar
  5. 5.
    Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition: Foundations And Applications (Machine Perception and Artificial Intelligence). World Scientific Publishing Co., Inc., River Edge (2005)zbMATHGoogle Scholar
  6. 6.
    Bunke, H., Riesen, K.: Graph classication based on dissimilarity space embedding. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSSPR 2008. LNCS, vol. 5342, pp. 996–1007. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Orozco-Alzate, M., Castellanos-Domínguez, C.G.: Nearest feature rules and dissimilarity representations for face recognition problems. In: Kurihara, K. (ed.) Face Recognition; International Journal of Advanced Robotic Systems, Vienna, Austria 337–356 (May 2007)Google Scholar
  8. 8.
    Kim, S.W.: On using a dissimilarity representation method to solve the small sample size problem for face recognition. In: ACIVS, pp. 1174–1185 (2006)Google Scholar
  9. 9.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: ECCV, vol. (1), pp. 469–481 (2004)Google Scholar
  10. 10.
  11. 11.
    Socolinsky, D.A., Wolff, L.B., Neuheisel, J.D., Eveland, C.K.: Illumination invariant face recognition using thermal infrared imagery. In: CVPR, vol. (1), pp. 527–534 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yenisel Plasencia
    • 1
    • 2
  • Edel García-Reyes
    • 1
  • Robert P. W. Duin
    • 2
  • Heydi Mendez-Vazquez
    • 1
  • César San-Martin
    • 3
  • Claudio Soto
    • 3
  1. 1.Advanced Technologies Application CenterLa HabanaCuba
  2. 2.Faculty of Electrical Engineering, Mathematics and Computer SciencesDelft University of TechnologyThe Netherlands
  3. 3.Information Proc. Lab, DIEUniversidad de La FronteraTemucoChile

Personalised recommendations