SAR Image Segmentation Using Level Sets and Region Competition under the \(\mathcal{G}^H\) Model

  • Maria Elena Buemi
  • Norberto Goussies
  • Julio Jacobo
  • Marta Mejail
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)


Synthetic Aperture Radar (SAR) images are dificult to segment due to their characteristic noise, called speckle, which is multiplicative, non-gaussian and has a low signal to noise ratio. In this work we use the \(\mathcal{G}^{H}\) distribution to model the SAR data from the different regions of the image. We estimate their statistical parameters and use them in a segmentation algorithm based on multiregion competition. We then apply this algorithm to segment simulated as well as real SAR images and evaluate the accuracy of the segmentation results obtained.


SAR images \(\mathcal{G}^{H}\)distribution multiregion competition level set segmentation 


  1. 1.
    Frery, A.C., Müller, H.-J., Yanasse, C.C.F., Sant’Anna, S.J.S.: A model for extremely heterogeneous clutter. IEEE Transactions on Geoscience and Remote Sensing 35(3), 648–659 (1997)CrossRefGoogle Scholar
  2. 2.
    Mejail, M.E., Frery, A.C., Jacobo-Berlles, J., Bustos, O.H.: Approximation of distributions for SAR images: proposal, evaluation and practical consequences. Latin American Applied Research 31, 83–92 (2001)Google Scholar
  3. 3.
    Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and bayes/mdl for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 884–900 (1996)CrossRefGoogle Scholar
  4. 4.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (2007)Google Scholar
  5. 5.
    Frery, A.C., Correia, A., Renno, C.D., Freitas, C.D.C., Jacobo-Berlles, J., Vasconcellos, K.L.P., Mejail, M., Sant’Anna, S.J.S.: Models for synthetic aperture radar image analysis. Resenhas (IME-USP) 4, 45–77 (1999)Google Scholar
  6. 6.
    Jacobo-Berlles, J., Mejail, M., Frery, A.C.: The ga0 distribution as the true model for sar images. In: SIBGRAPI 1999: Proceedings of the XII Brazilian Symposium on Computer Graphics and Image Processing, Washington, DC, USA, pp. 327–336. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  7. 7.
    Mejail, M., Frery, A.C., Jacobo-Berlles, J., Kornblit, F.: Approximation of the ka distribution by the ga. In: Second Latinoamerican Seminar on Radar Remote Sensing: Image Processing Techniques, pp. 29–35 (1999)Google Scholar
  8. 8.
    Mejail, M.E., Jacobo-Berlles, J., Frery, A.C., Bustos, O.H.: Classification of sar images using a general and tractable multiplicative model. International Journal of Remote Sensing 24(18), 3565–3582 (2003)CrossRefGoogle Scholar
  9. 9.
    Quartulli, M., Datcu, M.: Stochastic geometrical modelling for built-up area understanding from a single SAR intensity image with meter resolution. IEEE Transactions on Geoscience and Remote Sensing 42(9), 1996–2003 (2004)CrossRefGoogle Scholar
  10. 10.
    Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. International Journal of Computer Vision 50, 271–293 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Chung, G., Vese, L.: Energy minimization based segmentation and denoising using a multilayer level set approach. Energy Minimization Methods in Computer Vision and Pattern Recognition, 439–455 (2005)Google Scholar
  12. 12.
    Brox, T., Weickert, J.: Level set segmentation with multiple regions level set segmentation with multiple regions. IEEE Transactions on Image Processing 15(10), 3213–3218 (2006)CrossRefGoogle Scholar
  13. 13.
    Mansouri, A.R., Mitiche, A., Vazquez, C.: Multiregion competition: A level set extension of region competition to multiple region image partitioning. Computer Vision and Image Understanding 101(3), 137–150 (2006)CrossRefGoogle Scholar
  14. 14.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  15. 15.
    Ayed, I.B., Mitiche, A., Belhadj, Z.: Multiregion level-set partitioning of synthetic aperture radar images. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(5), 793–800 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Maria Elena Buemi
    • 1
  • Norberto Goussies
    • 1
  • Julio Jacobo
    • 1
  • Marta Mejail
    • 1
  1. 1.Departamento de Computación, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCiudad de Buenos AiresRepública Argentina

Personalised recommendations