Video Denoising by Fuzzy Directional Filter Using the DSP EVM DM642

  • Francisco J. Gallegos-Funes
  • Victor Kravchenko
  • Volodymyr Ponomaryov
  • Alberto Rosales-Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

We present a new 3D Fuzzy Directional (3D-FD) algorithm for the denoising of video colour sequences corrupted by impulsive noise. The proposed approach consists of the estimations of movement levels, noise in the neighborhood video frames, permitting to preserve the edges, fine details and chromaticity characteristics in video sequences. Experimental results show that the noise in these sequences can be efficiently removed by the proposed 3D-FD filter, and that the method outperforms other state of the art filters of comparable complexity on video sequences. Finally, hardware requirements are evaluated permitting real time implementation on DSP EVM DM642.

Keywords

Fuzzy logic Directional Processing Impulsive Noise 

References

  1. 1.
    Schulte, S., Morillas, S., Gregori, V., Kerre, E.: A new fuzzy color correlated impulse noise reduction method. IEEE Trans. Image Process. 16(10), 2565–2575 (2007)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Plataniotis, K.N., Androutsos, D., Vinayagamoorthy, S., Venetsanopoulos, A.N.: Color image processing using adaptive multichannel filters. IEEE Trans. Image Process. 6(7), 933–949 (1997)CrossRefGoogle Scholar
  3. 3.
    Ponomaryov, V.I., Gallegos-Funes, F.J., Rosales-Silva, A.: Real-time color imaging based on RM-Filters for impulsive noise reduction. J. Imaging Science and Technology 49(3), 205–219 (2005)MathSciNetGoogle Scholar
  4. 4.
    Lukac, R., Smolka, B., Plataniotis, K.N., Venetsanopoulos, A.N.: Selection weighted vector directional filters. Comput. Vision and Image Underst. 94, 140–167 (2004)CrossRefGoogle Scholar
  5. 5.
    Smolka, B., Lukac, R., Chydzinski, A., Plataniotis, K.N., Wojciechowski, W.: Fast adaptive similarity based impulsive noise reduction filter. Real-Time Imag., 261–276 (2003)Google Scholar
  6. 6.
    Lukac, R.: Adaptive vector median filtering. Pattern Recognition Letters 24, 1889–1899 (2003)CrossRefGoogle Scholar
  7. 7.
    Yin, H.B., Fang, X.Z., Wei, Z., Yang, X.K.: An improved motion-compensated 3-D LLMMSE filter with spatio–temporal adaptive filtering support. IEEE Trans. Circuits Syst. Video Techn. 17(12), 1714–1727 (2007)CrossRefGoogle Scholar
  8. 8.
    Ghazal, M., Amer, A., Ghrayeb, A.: A Real-Time Technique for Spatio–Temporal Video Noise Estimation. IEEE Trans. Circuits Syst. Video Techn. 17(12), 1690–1699 (2007)CrossRefGoogle Scholar
  9. 9.
    Mélange, T., Nachtegael, M., Kerre, E.E., Zlokolica, V., Schulte, S., De Witte, V., Pižurica, A., Philips, W.: Video denoising by fuzzy motion and details adaptive averaging. J. Electron. Imag. 17 0430051-19 (2008)Google Scholar
  10. 10.
    Ponomaryov, V.: Real-time 2D-3D filtering using order statistics based algorithms. J. Real-Time Image Process. 1(3), 173–194 (2007)CrossRefGoogle Scholar
  11. 11.
    Ponomaryov, V., Rosales, A., Gallegos, F., Loboda, I.: Adaptive vector directional filters to process multichannel images. IEICE Trans. Funds. Electronics Comms. Computer Sciences, E90-B 2, 429–430 (2007)Google Scholar
  12. 12.
    Zlokolica, V., Philips, W., Van De Ville, D.: A new non-linear filter for video processing. In: Proc. Third IEEE Benelux Signal Processing Symposium (SPS 2002), Leuven, Belgium, March 2002, pp. 221–224 (2002)Google Scholar
  13. 13.
    Zlokolica, V., Schulte, S., Pizurica, A., Philips, W., Kerre, E.: Fuzzy logic recursive motion detection and denoising of video sequences. J. Electron. Imag. 15(2), 023008 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Francisco J. Gallegos-Funes
    • 1
  • Victor Kravchenko
    • 2
  • Volodymyr Ponomaryov
    • 1
  • Alberto Rosales-Silva
    • 1
  1. 1.National Polytechnic Institute of Mexico 
  2. 2.Institute of Radio Engineering and ElectronicsMoscowRussia

Personalised recommendations