Object Contour Tracking Using Foreground and Background Distribution Matching

  • Mohand Saïd Allili
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5856)

Abstract

In this paper, we propose an effective approach for tracking distribution of objects. The approach uses a competition between a tracked objet and background distributions using active contours. Only the segmentation of the object in the first frame is required for initialization. The object contour is tracked by assigning pixels in a way that maximizes the likelihood of the object versus the background. We implement the approach using an EM-like algorithm which evolves the object contour exactly to its boundaries and adapts the distribution parameters of the object and the background to data.

References

  1. 1.
    Allili, M.S., Ziou, D.: Object Tracking in Videos Using Adaptive Mixture Models and Active Contours. Neurocomputing 71(10-12), 2001–2011 (2008)CrossRefGoogle Scholar
  2. 2.
    Allili, M.S., Ziou, D.: Globally Adaptive Region Information for Automatic Color-Texture Image Segmentation. Pattern Recognition Letters 28(15), 1946–1956 (2007)CrossRefGoogle Scholar
  3. 3.
    Avidon, S.: Ensemble Tracking. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 494–501 (2005)Google Scholar
  4. 4.
    Collins, R.T., Liu, Y.: Online Selection of Discriminative Tracking Features. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(10), 1631–1643 (2005)CrossRefGoogle Scholar
  5. 5.
    Bishop, C.M.: Patt. Recog. and Mach. Learn. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based Object Tracking. IEEE Trans. on Patt. Analysis and Mach. Intelligence 25(5), 564–577 (2003)CrossRefGoogle Scholar
  7. 7.
    Freedman, D., Zhang, T.: Active Contours for Tracking Distributions. IEEE Trans. on Image Processing 13(4), 518–526 (2004)CrossRefGoogle Scholar
  8. 8.
    Nascimento, J.C., et al.: Performance Evaluation of Object Detection Algorithms for Video Surveillance. IEEE Trans. on Multimedia 8(4), 761–774 (2006)CrossRefGoogle Scholar
  9. 9.
    Osher, S., et al.: Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. J. of Comp. Physics 79(1), 12–49 (1988)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mohand Saïd Allili
    • 1
  1. 1.Département d’Informatique et d’IngénierieUniversité du Québec en OutaouaisGatineau

Personalised recommendations