Skip to main content

Numerical Simulations of Short-Term Non-tidal Ocean Mass Anomalies

  • Chapter
  • First Online:
  • 1405 Accesses

Part of the book series: Advanced Technologies in Earth Sciences ((ATES))

Abstract

Short-term non-tidal ocean mass anomalies are currently reduced within the standard GRACE gravity field processing by means of the Ocean Model for Circulation and Tides (OMCT). Numerical sensitivity tests performed while defining the model configuration to be used for the atmosphere-ocean de-aliasing product (AOD) RL04 include the consideration of the European Centre for Medium-Range Weather Forecasts (ECMWF) short-term forecasts including accumulated wind stresses, the consideration of atmospheric and continental freshwater fluxes, and the treatment of time-variations of the total oceanic mass. Analyses of simulated ocean mass anomalies suggest that benefits of accumulated wind stresses do not outweigh errors contained in the forecasts with respect to the corresponding analyses. The impact of freshwater fluxes is generally small on ocean mass anomalies. Continental freshwater fluxes are in particular dominant on monthly time-scales and longer, allowing to neglect them for AOD purposes. Consequently, the total ocean mass is artificially held constant at every time-step in the operational simulations. Reasonable seasonal variations could have been only obtained after a yearly de-trending of the data, which cannot be performed in an operational setup.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson E, Bauer P, Beljaars A, Chevallier F, Holm E, Janiskova M, Kallberg P, Kelly G, Lopez P, McNally A, et al. (2005) Assimilation and modelling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull. Am. Meteorol. Soc. 86(3), 387–401.

    Article  Google Scholar 

  • Bretagnon P, Francou G (1988) Planetary theories in rectangular and spherical variables: VSOP87 solutions. Astron. Astrophys. 202, 309–315.

    Google Scholar 

  • Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys. Res. Lett. 31, L13310.

    Article  Google Scholar 

  • Conkright ME, Locarnini RA, Garcia HE, O’Brien TD, Boyer TP, Stephens C, Antonov JI (2002) World Ocean Atlas 2001: Objective Analysis, Data Statistics, and Figures, National Oceanographic Data Center, Silver Spring, MD, 17 pp.

    Google Scholar 

  • Dobslaw H (2007) Modellierung der allgemeinen ozeanischen Dynamik zur Korrektur und Interpretation von Satellitendaten. Scientific Technical Report 07/10, GeoForschungsZentrum, Potsdam, Germany, 113 pp.

    Google Scholar 

  • Dobslaw H, Thomas M (2005) Atmospheric induced oceanic tides from ECMWF forecasts. Geophys. Res. Lett. 32, L10615.

    Article  Google Scholar 

  • Dobslaw H, Thomas M (2007a) Impact of river run-off on global ocean mass redistribution. Geophys. J. Int. 168(2), 527–532.

    Article  Google Scholar 

  • Dobslaw H, Thomas M (2007b) Periodic and transient short-term mass variations in numerical simulations of atmosphere-ocean dynamics. Geotechnol. Sci. Rep. 11, 122–126.

    Google Scholar 

  • Drijfhout S, Heinze C, Latif M, Maier-Reimer E (1996) Mean circulation and internal variability in an ocean primitive equation model. J. Phys. Oceanogr. 26, 559–580.

    Article  Google Scholar 

  • Flechtner F (2007) AOD Product Description Document. GRACE 327-750, rev. 3.1, GeoForschungsZentrum, Potsdam, Germany, 43 pp.

    Google Scholar 

  • Greatbatch RJ (1994) A note on the representation of steric sea level in models that conserve volume rather than mass. J. Geophys. Res. 99(C6), 12767–12771.

    Article  Google Scholar 

  • Gross RS, Fukumori I, Menemenlis D (2003) Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J. Geophys. Res. 108(B8), 2370.

    Article  Google Scholar 

  • Hagemann S, Dümenil L, (1998) A parametrization of the lateral water flow for the global scale. Clim. Dyn. 14, 17–31.

    Article  Google Scholar 

  • Hagemann S, Arpe K, Bengtsson L (2005) Validation of the Hydrological Cycle of ERA-40. ERA-40 Project Report Series, 24, 42 S, European Centre for Medium-Range Weather Forecasts, Reading, UK.

    Google Scholar 

  • Hellerman S, Rosenstein M (1983) Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr. 13, 1093–1104.

    Article  Google Scholar 

  • Hibler III WD (1979) A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 9, 815–846.

    Article  Google Scholar 

  • Klinker E, Rabier F, Kelly G, Mahfouf J-F (2000) The ECMWF operational implementation of four dimensional variational assimilation, Part III: Experimental results and diagnostics with operational configuration. Q. J. R. Meteorol. Soc. 126, 1191–1215.

    Article  Google Scholar 

  • Latif M, et al. (2003) Reconstructing, monitoring and predicting decadal scale changes in the north Atlantic thermohaline circulation with sea surface temperature. J. Clim. 17, 1605–1613.

    Article  Google Scholar 

  • Levitus S (1982) Climatological Atlas of the World Ocean. NOAA Professional Paper 13, U.S. Department of Commerce, 173 pp.

    Google Scholar 

  • Meeus J (1991) Astronomical Algorithms, Willmann-Bell Inc., Richmond, VA, 460 pp.

    Google Scholar 

  • Persson A (2003) User Guide to ECMWF Forecast Products, 123 S, European Centre for Medium-Range Weather Forecasts, Reading, UK.

    Google Scholar 

  • Ponte RM, Stammer D (2000) Global and regional axial ocean angular momentum signals and length-of-day variations (1985–1996). J. Geophys. Res. 105, 17161–17171.

    Article  Google Scholar 

  • Thomas M (2002) Ozeanisch induzierte Erdrotationsschwankungen – Ergebnisse eines Simultanmodells für Zirkulation und ephemeridische Gezeiten im Weltozean, Dissertation, Institut für Meereskunde, Universität Hamburg, Hamburg, 128 pp.

    Google Scholar 

  • Thomas M, Sündermann J, Maier-Reimer E (2001) Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation. Geophys. Res. Lett. 28(12), 2457–2460.

    Article  Google Scholar 

  • Thomas M, Dobslaw H (2010) Representation of ocean tide dynamics in a global baroclinic ocean model based on analytical luni-solar ephemerides. Geophys. Res. Lett. (submitted).

    Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. 103, 30205–30229.

    Article  Google Scholar 

  • Walter C (2007) Simulationen hydrologischer Massenvariationen und deren Einfluss auf die Erdrotation. Dissertation, Institut für Planetare Geodäsie, Technische Universität Dresden, 196 pp.

    Google Scholar 

  • Wolff JO, Maier-Reimer E, Legutke S (1997) The Hamburg Ocean Primitive Equation Model HOPE. Technical Report 13, Deutsches Klimarechenzentrum, Hamburg, 103 pp.

    Google Scholar 

  • Wünsch J, Thomas M, Gruber T (2001) Simulation of oceanic bottom pressure for gravity space missions. Geophys. J. Int. 147, 428–434.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Deutscher Wetterdienst, Offenbach, Germany, and European Centre for Medium-Range Weather Forecasts, Reading, U.K., for providing data from ECMWF’s operational forecast model. This work was supported by the German Ministry of Education and Research (BMBF) and the Deutsche Forschungsgemeinschaft within the GEOTECHNOLOGIEN research program under grant 03F0423D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Dobslaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dobslaw, H., Thomas, M. (2010). Numerical Simulations of Short-Term Non-tidal Ocean Mass Anomalies. In: Flechtner, F., et al. System Earth via Geodetic-Geophysical Space Techniques. Advanced Technologies in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10228-8_10

Download citation

Publish with us

Policies and ethics