Skip to main content

Part of the book series: Nonlinear Physical Science ((NPS))

  • 806 Accesses

Abstract

An ideal isotropic fiber propagates undisturbed in any state of polarization launched into the fiber. Under ideal conditions of perfect cylindrical geometry and isotropic material, a mode excited with its polarization in one direction would not couple with the mode in the orthogonal direction. Real fibers possess some amount of anisotropy because of an accidental loss of circular symmetry. This loss is due to either a non-circular geometry of the fiber or a non-symmetrical stress field in the fiber cross section. Thus, small deviations from the cylindrical geometry or small fluctuations in material anisotropy result in a mixing of the two polarization states and the mode degeneracy is broken. Thus, the mode propagation constant becomes slightly different for the modes polarized in orthogonal directions. This property is referred to as modal birefringence [35].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Abdullaev, S. Darmanyan & P. Khabibullaev. Optical Solitons. Springer-Verlag, New York, NY. USA. (1993).

    Google Scholar 

  2. M. J. Ablowitz & H. Segur. Solitons and the Inverse Scattering Transform. SIAM. Philadelphia, PA. USA. (1981).

    MATH  Google Scholar 

  3. M. J. Ablowitz, G. Biondini, S. Chakravarty, R. B. Jenkins & J. R. Sauer. “Four-wave mixing in wavelength-division multiplexed soliton systems—Ideal fibers. Journal of Optical Society of America B. Vol 14, 1788–1794. (1997).

    Article  ADS  Google Scholar 

  4. G. P. Agrawal. Nonlinear Fiber Optics. Academic Press, San Deigo, CA. USA. (1995).

    Google Scholar 

  5. N. N. Akhmediev & A. Ankiewicz. Solitons, Nonlinear Pulses and Beams. Chapman and Hall, London. UK. (1997).

    Google Scholar 

  6. D. Anderson. “Variational approach to nonlinear pulse propagation in optical fibers”. Physical Review A. Vol 27, No 6, 3135–3145. (1983).

    Article  ADS  Google Scholar 

  7. A. Biswas. “Dynamics of Gaussian and super-Gaussian solitons in birefringent optical fibers”. Progress in Electromagnetics Research. Vol 33, 119–139. (2001).

    Article  Google Scholar 

  8. A. Biswas. “Dispersion-managed vector solitons in optical fibers”. Fiber and Integrated Optics. Vol 20, No 5, 503–515. (2001).

    Article  ADS  Google Scholar 

  9. A. Biswas. “Gaussian solitons in birefringent optical fibers”. International Journal of Pure and Applied Mathematics. Vol 2, No 1, 87–104. (2002).

    MathSciNet  MATH  Google Scholar 

  10. A. Biswas. “Super-Gaussian solitons in optical fibers”. Fiber and Integrated Optics. Vol 21, No 2, 115–124. (2002).

    Article  ADS  Google Scholar 

  11. A. Biswas. “Dispersion-managed solitons in optical fibers”. Journal of Optics A. Vol 4, No 1, 84–97. (2002).

    Google Scholar 

  12. A. Biswas. “Integro-differential perturbation of dispersion-managed solitons”. Journal of Electromagnetic Waves and Applications. Vol 17, No 4, 641–665. (2003).

    Article  Google Scholar 

  13. A. Biswas. “Dispersion-managed solitons in optical couplers”. Journal of Nonlinear Optical Physics and Materials. Vol 12, No 1, 45–74. (2003).

    Article  ADS  Google Scholar 

  14. A. Biswas. “Perturbations of dispersion-managed optical solitons”. Progress in Electromagnetics Research. Vol 48, 85–123. (2004).

    Article  ADS  Google Scholar 

  15. A. Biswas. “Dispersion-Managed solitons in birefringent fibers and multiple channels”. International Mathematical Journal. Vol 5, No 5, 477–515. (2004).

    MathSciNet  MATH  Google Scholar 

  16. A. Biswas & S. Konar. Introduction to Non-Kerr Law Optical Solitons. CRC Press, Boca Raton, FL. USA. (2006).

    Book  Google Scholar 

  17. R. Kohl, A. Biswas, D. Milovic & E. Zerrad. “Perturbation of Gaussian optical solitons in dispersion-managed fibers”. Applied Mathematics and Computation. Vol 199, No 1, 250–258. (2009).

    Article  MathSciNet  Google Scholar 

  18. R. Kohl, A. Biswas, D. Milovic & E. Zerrad. “Perturbation of super-sech solitons in dispersion-managed optical fibers”. International Journal of Theoretical Physics. Vol 47, No 7, 2038–2064. (2008).

    Article  ADS  MATH  Google Scholar 

  19. R. Kohl, A. Biswas, D. Milovic & E. Zerrad. “Adiabatic dynamics of Gaussian and super-Gaussian solitons in dispersion-managed optical fibers”. Progress in Electromagnetics Research. Vol 84, 27–53. (2008).

    Article  Google Scholar 

  20. R. Kohl, D. Milovic, E. Zerrad & A. Biswas. “Perturbation of super-Gaussian optical solitons in dispersion-managed fibers”. Mathematical and Computer Modelling. Vol 49, No 7–8, 418, 427. (2009).

    MathSciNet  Google Scholar 

  21. R. Kohl, D. Milovic, E. Zerrad & A. Biswas. “Optical solitons by He’s variational principle in a non-Kerr law media”. Journal of Infrared, Millimeter and Terahertz Waves. Vol 30, No 5, 526–537. (2009).

    Article  Google Scholar 

  22. R. Kohl, D. Milovic, E. Zerrad & A. Biswas. “Soliton perturbation theory for dispersion-managed optical fibers”. Journal of Nonlinear Optical Physics and Materials. Vol 18, No 2. (2009).

    Google Scholar 

  23. M. F. Mahmood & S. B. Qadri. “Modeling propagation of chirped solitons in an elliptically low birefringent single-mode optical fiber”. Journal of Nonlinear Optical Physics and Materials. Vol 8, No 4, 469–475. (1999).

    Article  ADS  Google Scholar 

  24. D. Marcuse, C. R. Menyuk & P. K. A. Wai “Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence”. Journal of Lightwave Technology. Vol 15, No 9, 1735–1746. (1997).

    Article  ADS  Google Scholar 

  25. M. Matsumoto. “Analysis of interaction between stretched pulses propagating in dispersion-managed fibers”. IEEE Photonics Technology Letters. Vol 10, No 3, 373–375. (1998).

    Article  ADS  Google Scholar 

  26. A. Panajotovic, D. Milovic & A. Mittic. “Boundary case of pulse propagation analytic solution in the presence of interference and higher order dispersion”. TELSIKS 2005 Conference Proceedings. 547–550. Nis-Serbia. (2005).

    Google Scholar 

  27. A. Panajotovic, D. Milovic, A. Biswas & E. Zerrad. “Influence of even order dispersion on super-sech soliton transmission quality under coherent crosstalk”. Research Letters in Optics. Vol 2008, 613986, 5 pages. (2008).

    Article  Google Scholar 

  28. A. Panajotovic, D. Milovic & A. Biswas. “Influence of even order dispersion on soliton transmission quality with coherent interference”. Progress in Electromagnetics Research B. Vol 3, 63–72. (2008).

    Article  Google Scholar 

  29. O. V. Sinkin, V. S. Grigoryan & C. R. Menyuk. “Accurate probabilistic treatment of bit-pattern-dependent nonlinear distortions in BER calculations for WDM RZ systems”. Journal of Lightwave Technology. Vol 25, No 10, 2959–2967. (2007).

    Article  ADS  Google Scholar 

  30. C. D. Stacey, R. M. Jenkins, J. Banerji & A. R. Davis. “Demonstration of fundamental mode only propagation in highly multimode fibre for high power EDFAs”. Optics Communications. Vol 269, 310–314. (2007).

    Article  ADS  Google Scholar 

  31. M. Stefanovic & D. Milovic. “The impact of out-of-band crosstalk on optical communication link preferences”. Journal of Optical Communications. Vol 26, No 2, 69–72. (2005).

    Google Scholar 

  32. M. Stefanovic, D. Draca, A. Panajotovic & D. Milovic. “Individual and joint influence of second and third order dispersion on transmission quality in the presence of coherent interference”. Optik. Vol 120, No 13, 636–641.(2009).

    ADS  Google Scholar 

  33. B. Stojanovic, D. M. Milovic & A. Biswas. “Timing shift of optical pulses due to inter-channel crosstalk”. Progress in Electromagnetics Research M. Vol 1, 21–30. (2008).

    Article  Google Scholar 

  34. S. K. Turitsyn, I. Gabitov, E. W. Laedke, V. K. Mezentsev, S. L. Musher, E. G. Shapiro, T. Schäfer, & K. H. Spatschek. “Variational approach to optical pulse propagation in dispersion compensated transmission system”. Optics Communications. Vol 151, No 1–3, 117–135. (1998).

    Article  ADS  Google Scholar 

  35. T. R. Wolinski. “Polarimetric optical fibers and sensors”. Progress in Optics. Vol XL, 1–75. (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biswas, A., Milovic, D., Edwards, M. (2010). Birefringent Fibers. In: Mathematical Theory of Dispersion-Managed Optical Solitons. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10220-2_4

Download citation

Publish with us

Policies and ethics