Skip to main content

Fully Decomposable Split Graphs

  • Conference paper
Combinatorial Algorithms (IWOCA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5874))

Included in the following conference series:

  • 713 Accesses

Abstract

We discuss various questions around partitioning a split graph into connected parts. Our main result is a polynomial time algorithm that decides whether a given split graph is fully decomposable, i.e., whether it can be partitioned into connected parts of order α 1,α 2,...,α k for every α 1,α 2,...,α k summing up to the order of the graph. In contrast, we show that the decision problem whether a given split graph can be partitioned into connected parts of order α 1,α 2,...,α k for a given partition α 1,α 2,...,α k of the order of the graph, is NP-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barth, D., Baudon, O., Puech, J.: Decomposable trees: A polynomial algorithm for tripodes. Discrete Applied Mathematics 119, 205–216 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barth, D., Fournier, H.: A degree bound on decomposable trees. Discrete Mathematics 306, 469–477 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dyer, M.E., Frieze, A.M.: On the complexity of partitioning graphs into connected subgraphs. Discrete Applied Mathematics 10, 139–153 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  5. Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  6. Horňák, M., Woźniak, M.: Arbitrarily vertex decomposable trees are of maximum degree at most six. Opuscula Mathematica 23, 49–62 (2003)

    MATH  Google Scholar 

  7. Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics, vol. 29. North-Holland, Amsterdam (1986)

    MATH  Google Scholar 

  8. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Broersma, H., Kratsch, D., Woeginger, G.J. (2009). Fully Decomposable Split Graphs. In: Fiala, J., Kratochvíl, J., Miller, M. (eds) Combinatorial Algorithms. IWOCA 2009. Lecture Notes in Computer Science, vol 5874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10217-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10217-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10216-5

  • Online ISBN: 978-3-642-10217-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics