Skip to main content

What Does Digital Straightness Tell about Digital Convexity?

  • Conference paper
Combinatorial Image Analysis (IWCIA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5852))

Included in the following conference series:

Abstract

The paper studies local convexity properties of parts of digital boundaries. An online and linear-time algorithm is introduced for the decomposition of a digital boundary into convex and concave parts. In addition, other data are computed at the same time without any extra cost: the hull of each convex or concave part as well as the Bezout points of each edge of those hulls. The proposed algorithm involves well-understood algorithms: adding a point to the front or removing a point from the back of a digital straight segment and computing the set of maximal segments. The output of the algorithm is useful either for a polygonal representation of digital boundaries or for a segmentation into circular arcs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coeurjolly, D., Gérard, Y., Reveillès, J.-P., Tougne, L.: An Elementary Algorithm for Digital Arc Segmentation. Discrete Applied Mathematics 139(1-3), 31–50 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Coeurjolly, D., Klette, R.: A Comparative Evaluation of Length Estimators of Digital Curves. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 252–257 (2004)

    Article  Google Scholar 

  3. Coeurjolly, D., Miguet, S., Tougne, L.: Discrete Curvature Based on Osculating Circle Estimation. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, p. 303. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Dorksen-Reiter, H., Debled-Rennesson, I.: Convex and Concave Parts of Digital Curves. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties from Incomplete Data, vol. 31, pp. 145–159. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Dorksen-Reiter, H., Debled-Rennesson, I.: A linear Algorithm for Polygonal Representations of Digital Sets. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 307–319. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Debled-Rennesson, I., Reveillès, J.-P.: A linear algorithm for segmentation of digital curves. Intern. Journal of Pattern Recognition and Artificial Intelligence 9, 635–662 (1995)

    Article  Google Scholar 

  7. Debled-Rennesson, I., Rémy, J.-L., Rouyer-Degli, J.: Detection of the Discrete Convexity of Polyominoes. Discrete Applied Mathematics 125, 115–133 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. de Vieilleville, F., Lachaud, J.-O., Feschet, F.: Maximal Digital Straight Segments and Convergence of Discrete Geometric Estimators. Journal of Mathematical Image and Vision 27(2), 471–502 (2007)

    Google Scholar 

  9. Eckhardt, U.: Digital Lines and Digital Convexity. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 209–227. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Eckhardt, U., Dorksen-Reiter, H.: Polygonal Representations of Digital Sets. Algorithmica 38(1), 5–23 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feschet, F.: Canonical Representations of Discrete Curves. Pattern Analysis and Applications 8, 84–94 (2005)

    Article  MathSciNet  Google Scholar 

  12. Feschet, F., Tougne, L.: Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Feschet, F., Tougne, L.: On the Min DSS Problem of Closed Discrete Curves. Discrete Applied Mathematics 151, 138–153 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lachaud, J.-O., Vialard, A., de Vieilleville, F.: Fast, Accurate and Convergent Tangent Estimation on Digital Contours. Image and Vision Computing 25, 1572–1587 (2007)

    Article  Google Scholar 

  15. Reveillès, J.-P.: Géométrie Discrète, calculs en nombres entiers et algorithmique. thèse d’etat, Université Louis Pasteur (1991)

    Google Scholar 

  16. Sklansky, J., Chazin, R.L., Hansen, B.J.: Minimum-perimeter Polygons of Digitized Silhouettes. IEEE Transactions on Computers 21(3), 260–268 (1972)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roussillon, T., Tougne, L., Sivignon, I. (2009). What Does Digital Straightness Tell about Digital Convexity?. In: Wiederhold, P., Barneva, R.P. (eds) Combinatorial Image Analysis. IWCIA 2009. Lecture Notes in Computer Science, vol 5852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10210-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10210-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10208-0

  • Online ISBN: 978-3-642-10210-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics