Skip to main content

Engineering Time-Expanded Graphs for Faster Timetable Information

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5868))

Abstract

We present an extension of the well-known time-expanded approach for timetable information. By remodeling unimportant stations, we are able to obtain faster query times with less space consumption than the original model. Moreover, we show that our extensions harmonize well with speed-up techniques whose adaption to timetable networks is more challenging than one might expect.

Partially supported by the Future and Emerging Technologies Unit of EC (IST priority – 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. In: Munro, I., Wagner, D. (eds.) Proceedings of the 10th Workshop on Algorithm Engineering and Experiments (ALENEX 2008), pp. 13–26. SIAM, Philadelphia (2008)

    Google Scholar 

  2. Bauer, R., Delling, D., Wagner, D.: Experimental Study on Speed-Up Techniques for Timetable Information Systems. In: Liebchen, C., Ahuja, R.K., Mesa, J.A. (eds.) Proceedings of the 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2007). Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), pp. 209–225. Schloss Dagstuhl, Germany (2007)

    Google Scholar 

  3. Delling, D., Giannakopoulou, K., Wagner, D., Zaroliagis, C.: Timetable Information Updating in Case of Delays: Modeling Issues. Technical Report 133, Arrival Technical Report (2008)

    Google Scholar 

  4. Delling, D., Pajor, T., Wagner, D.: Engineering Time-Expanded Graphs for Faster Timetable Information. In: Proceedings of the 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2008), Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (September 2008)

    Google Scholar 

  5. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  7. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A* Search Meets Graph Theory. In: Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 156–165 (2005)

    Google Scholar 

  9. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better Landmarks Within Reach. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 38–51. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Goldberg, A.V., Werneck, R.F.: Computing Point-to-Point Shortest Paths from External Memory. In: Proceedings of the 7th Workshop on Algorithm Engineering and Experiments (ALENEX 2005), pp. 26–40. SIAM, Philadelphia (2005)

    Google Scholar 

  11. Hart, P.E., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4, 100–107 (1968)

    Article  Google Scholar 

  12. Hilger, M.: Accelerating Point-to-Point Shortest Path Computations in Large Scale Networks. Master’s thesis, Technische Universität Berlin (2007)

    Google Scholar 

  13. Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of Shortest Path and Constrained Shortest Path Computation. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 126–138. Springer, Heidelberg (2005)

    Google Scholar 

  14. Lauther, U.: An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static Networks with Geographical Background, vol. 22, pp. 219–230. IfGI prints (2004)

    Google Scholar 

  15. Müller-Hannemann, M., Schnee, M.: Finding All Attractive Train Connections by Multi-Criteria Pareto Search. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 246–263. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Müller–Hannemann, M., Schnee, M., Frede, L.: Efficient On-Trip Timetable Information in the Presence of Delays. In: Proceedings of the 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2008), Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (September 2008)

    Google Scholar 

  17. Pajor, T.: Goal Directed Speed-Up Techniques for Shortest Path Queries in Timetable Networks, Student Research Project (January 2008)

    Google Scholar 

  18. Pellegrini, F.: SCOTCH: Static Mapping, Graph, Mesh and Hypergraph Partitioning, and Parallel and Sequential Sparse Matrix Ordering Package (2007)

    Google Scholar 

  19. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Experimental Comparison of Shortest Path Approaches for Timetable Information. In: Proceedings of the 6th Workshop on Algorithm Engineering and Experiments (ALENEX 2004), pp. 88–99. SIAM, Philadelphia (2004)

    Google Scholar 

  20. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable Information in Public Transportation Systems. ACM Journal of Experimental Algorithmics 12, Article 2.4 (2007)

    Google Scholar 

  21. Sanders, P., Schultes, D.: Engineering Highway Hierarchies. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s Algorithm On-Line: An Empirical Case Study from Public Railroad Transport. In: Vitter, J.S., Zaroliagis, C.D. (eds.) WAE 1999. LNCS, vol. 1668, pp. 110–123. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delling, D., Pajor, T., Wagner, D. (2009). Engineering Time-Expanded Graphs for Faster Timetable Information. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds) Robust and Online Large-Scale Optimization. Lecture Notes in Computer Science, vol 5868. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05465-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05465-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05464-8

  • Online ISBN: 978-3-642-05465-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics