Skip to main content

The Concept of Recoverable Robustness, Linear Programming Recovery, and Railway Applications

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5868))

Abstract

We present a new concept for optimization under uncertainty: recoverable robustness. A solution is recovery robust if it can be recovered by limited means in all likely scenarios. Specializing the general concept to linear programming we can show that recoverable robustness combines the flexibility of stochastic programming with the tractability and performances guarantee of the classical robust approach. We exemplify recoverable robustness in delay resistant, periodic and aperiodic timetabling problems, and train platforming.

This work was partially supported by the Future and Emerging Technologies Unit of EC, under contract no. FP6-021235-2 (FP6 IST/FET Open/Project ARRIVAL).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Special issue on robust optimization. Mathematical Programming A 107(1-2) (2006)

    Google Scholar 

  2. Berger, A., Lorenz, U., Hoffmann, R., Stiller, S.: TOPSU-RDM: A simulation platform for railway delay management. In: Proceedings of SimuTools (2008)

    Google Scholar 

  3. Caprara, A., Galli, L., Stiller, S., Toth, P.: Recoverable-robust platforming by network buffering. Technical Report ARRIVAL-TR-0157, ARRIVAL Project (2008)

    Google Scholar 

  4. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A.: On the interaction between robust timetable planning and delay management. Technical Report ARRIVAL-TR-0116, ARRIVAL project (2007); Published at COCOA 2008

    Google Scholar 

  5. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A.: Robust algorithms and price of robustness in shunting problems. In: Proceedings of the 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, ATOMS (2007)

    Google Scholar 

  6. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A.: Recoverable robust timetabling: Complexity results and algorithms. Technical report, ARRIVAL Project (2008)

    Google Scholar 

  7. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A., Schachtebeck, M., Schöbel, A.: Recoverable robustness in shunting and timetabling. In: Robust and Online Large-Scale Optimization, pp. 29–61. Springer, Heidelberg (2009)

    Google Scholar 

  8. Cicerone, S., Di Stefano, G., Schachtebeck, M., Schöbel, A.: Dynamic algorithms for recoverable robustness problems. In: Proceedings of the 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2008), Schloss Dagstuhl Seminar Proceedings (2008)

    Google Scholar 

  9. Cicerone, S., Di Stefano, G., Schachtebeck, M., Schöbel, A.: Multi-stage recoverable robustness problems. Technical report, ARRIVAL Project (2009)

    Google Scholar 

  10. Liebchen, C.: Periodic Timetable Optimization in Public Transport. dissertation.de – Verlag im Internet, Berlin (2006)

    Google Scholar 

  11. Liebchen, C., Lübbecke, M., Möhring, R.H., Stiller, S.: Recoverable robustness. Technical Report ARRIVAL-TR-0066, ARRIVAL-Project (2007)

    Google Scholar 

  12. Liebchen, C., Stiller, S.: Delay resistant timetabling. Preprint 024–2006, TU Berlin, Institut für Mathematik (2006)

    Google Scholar 

  13. Tyrrell Rockafellar, R.: Network ows and monotropic optimization. John Wiley & Sons, Inc., Chichester (1984)

    Google Scholar 

  14. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics 2(4), 550–581 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Soyster, A.L.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research 21(4), 1154–1157 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stiller, S.: Extending Concepts of Reliability. Network Creation Games, Real-time Scheduling, and Robust Optimization. TU Berlin, Dissertation, Berlin (2009)

    Google Scholar 

  17. Vromans, M., Dekker, R., Kroon, L.: Reliability and heterogeneity of railway services. European Journal of Operational Research 172, 647–665 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liebchen, C., Lübbecke, M., Möhring, R., Stiller, S. (2009). The Concept of Recoverable Robustness, Linear Programming Recovery, and Railway Applications. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds) Robust and Online Large-Scale Optimization. Lecture Notes in Computer Science, vol 5868. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05465-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05465-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05464-8

  • Online ISBN: 978-3-642-05465-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics