Skip to main content

Measurements of Thin Layers After the Coating Process

  • Chapter
Handbook of Thin-Film Technology

Zusammenfassung

The thermal conductivity of thin films is important for the nucleation process and the film growth. The heat conductivity λ of a material is defined through:

$$\mathrm{d}\dot{Q}=-\lambda\left({\partial\delta/\partial s}\right)\,\mathrm{d}A\,.$$
(12.1)

The heat flow \(\mathrm{d}\dot{Q}\) (quantity of heat for each time unit) flows through, under the effect toward the surface-normal existing temperature gradient \((\partial\delta/\partial s)\) the area \(\mathrm{d}A\).

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-3-642-05430-3_14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Franz, R., G. Wiedemann: Über die Wärme-Leitungsfähigkeit der Metalle, Annalen der Physik und Chemie Nr. 8, 1853

    Google Scholar 

  2. Dua AK, Agarwala RP (1971) Thermal conductivity of thin films of alkali metals. Thin Solid Films 10:137–139

    Article  Google Scholar 

  3. Patrick WJ (1966) Measurement of resistivity and mobility in silicon epitaxial layers on a control wafer. Solid-State Electronics 9(3):203–211

    Article  Google Scholar 

  4. Maissel LI, Glang R (1970) Chapter 13. In: Maissel LI, Glang R (eds) Handbook of Thin Film Technology. McGraw-Hill, New York

    Google Scholar 

  5. Ishikawa Y, Miura N (1991) Physics and Engineering Application of Magnetism. Springer, Berlin

    Book  Google Scholar 

  6. Stoner EC, Wohlfahrth EP (1991) A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans on Magnetic 27:4475–3518

    Article  Google Scholar 

  7. Foner S (1975) Further improvements in vibrating sample magnetometer sensitivity. Rev Sci Inst 46:1425–1435

    Article  Google Scholar 

  8. Flanders PJ (1988) An alternating-gradient magnetometer. J Appl Phys 63:3940–3945

    Article  Google Scholar 

  9. Solymar L (1972) Superconductive Tunneling and Application. Chapman and Hall, London

    Google Scholar 

  10. Hornauer H, Atommono TM, Röll K (1990) A Kerr magnetometer using Faraday modulation technique. J Magn Magnetic Materials 83:551–552

    Article  Google Scholar 

  11. Rohrmann H, Hoffmann H (1989) High-resolution Kerr observation of magnetic domains. Thin Solid Films 175:273–279

    Article  Google Scholar 

  12. Hamrle J et al (2007) Huge quadratic magneto-optical Kerr effect and magnetization reversal in the Co2FeSi compound. J Phys D: Appl Phys 40:1563

    Article  Google Scholar 

  13. Wyszecki G (1978) Colometry. In: Driscoll WG, Vaughan W (eds) Handbook of Optics. McGraw-Hill, New York

    Google Scholar 

  14. Schrift Nr. 537 316/8.88 der Minolta GmbH, Ahrensburg, Germany

    Google Scholar 

  15. Durrant, B.G.: Barrier & Sealing – The prospects for metalized PP, Paper, Film & Foil Converter (1984), pp. 61[12-11]

    Google Scholar 

  16. Krauss WM (1984) Objective/subjective views of metalized food packaging. Paper, Films & Converter :58–60

    Google Scholar 

  17. Born M, Wolf E (2003) Principles of optics, 7th edn. Cambridge University Press,

    Google Scholar 

  18. MacAdam DL (1985) Color measurement, 2nd edn. Springer,

    Book  Google Scholar 

  19. Pedrotti FL, Pedrotti LS (1993) Introduction to Optics, 2nd edn. Prentice Hall,

    Google Scholar 

  20. Azzam RMA, Bashara NM (1992) Ellipsometry and polarized light. North-Holland,

    Google Scholar 

  21. Lawes G (1987) Scanning electron microscopy and x-ray microanalysis. Wiley,

    Google Scholar 

  22. Reimer L (1985) Scanning electron microscopy: physics of image formation and microanalysis. Springer,

    Book  Google Scholar 

  23. “Handbook of microscopy” VCH, 1997

    Google Scholar 

  24. Saleh BEA, Teich MC (2007) Fundamentals of Photonics. Wiley,

    Google Scholar 

  25. Tu KN, Rosenberg R (1988) Analytical techniques for thin films Treatise on Materials Science and Technology, vol. 27. Academic Press, Inc., Boston

    Google Scholar 

  26. Windischmann H (1991) Intrinsic stress in sputtered thin films. J Vac Sci Technol A 9(4):2431–2436

    Article  Google Scholar 

  27. Klokholm E (1968) Intrinsic stress in evaporated. J Vac Sci Technol 6:138–140

    Article  Google Scholar 

  28. Orent T (1991) Stress modification in sputtered zinc sulfide and zinc oxysulfide thin films. J Vac Sci Technol A 9(4):2447–2452

    Article  Google Scholar 

  29. Rossnagel SM, Glistrap P, Rujkorakarn R (1982) Stress measurement in thin films by geometrical optics. J Vac Sci Technol 21(4):1045–1046

    Article  Google Scholar 

  30. Klokholm E (1969) An apparatus for measuring stress in thin films. The. Review of Scientific Instruments 40:1054–1058

    Article  Google Scholar 

  31. Nix WD, Mehl RF (1989) Mechanical Properties of Thin Films. Metallurgical Transaction A 20:2217–2244

    Article  Google Scholar 

  32. Bangert H, Kamintschek A et al (1986) Ultramicrohardness Measurement on Aluminum Films Evaporated under Various Conditions. Thin Solid Films 137:193–198

    Article  Google Scholar 

  33. ISO 409/1: Metallic materials – Hardness test – Tables of Vickers hardness values for use in tests made on flat surfaces – Part 1: HV 5 to HV 100. Ed.: International Organization for Standardization, 409/1-1982 (E).

    Google Scholar 

  34. ISO 4516: Metallic and related coatings – Vickers and Knoop microhardness tests – Ed.: International Organization for Standardization, 4516-1980 (E).

    Google Scholar 

  35. Fischer-Cripps AC (2004) Nanoindentation. Springer,

    Book  Google Scholar 

  36. Mittal, K.L.: Surface chemical citeria for maximum adhesion and their verification against the experimentally measured adhesive strength values. In: Adhesion Science and Technology, 9A. Ed. Lee, L.H. New York: Plenum Publishing Corporation, pp. 129–168

    Google Scholar 

  37. Valli J (1986) A review of adhesion test methods for thin hard coatings. J Vac Sci Technol A 4(6):3007–3014

    Article  Google Scholar 

  38. Ganz S, Krämer KF (1990) Zerstörungsfreie Untersuchung mit hochauflösender Akustomikroskopie vin 10 MHz bis 2 GHz. Kunststoffe 80:602–606

    Google Scholar 

  39. Hoppe M, Bereiter-Hahn J (1985) Applications of Scanning Acoustic Microscopy – Survey and New Aspects. IEEE Transactions on Sonics and Ultrasonics SU-32(2):289–301

    Article  Google Scholar 

  40. Kienel G (1992) Plasma-assisted vacuum coating processes. Int J of Modern Phys B 6:1–24

    Article  Google Scholar 

  41. Marton D, Fine J (1990) Sputtering Induced Surface Roughness of Metallic Thin Films. Thin Solid Films 185:79–90

    Article  Google Scholar 

  42. Bennett JM (1985) Comparison of instruments for measuring step heights and surface profiles. Reprint from Applied Optics 24:3766–3772

    Article  Google Scholar 

  43. Ott A (1977) Schichtdickenmessung mit dem Betarückstreu-Verfahren. Maschine und Werkzeug 7:

    Google Scholar 

  44. Rößiger V, Thomas HJ (1990) Quantitative XRF Analyisis of Surface Layers: Procedure of the Determination of Thickness and Composition. X-Ray Spectrometry 19:211

    Article  Google Scholar 

  45. Licari JJ, Enlow LR (1988) Hybrid Microciruit Technology Handbook. Noyes Publications, Park Ridge

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frey, H., Helmut, T. (2015). Measurements of Thin Layers After the Coating Process. In: Frey, H., Khan, H.R. (eds) Handbook of Thin-Film Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05430-3_12

Download citation

Publish with us

Policies and ethics