Skip to main content

Physical Basics of Modern Methods of Surface and Thin Film Analysis

  • Chapter
Handbook of Thin-Film Technology

Abstract

The characterization of surfaces contains the identification of the atoms existing at the surface, their classification in crystalline or amorphous structure, the chemical bonding, and the electronic structure of the surface. By means of this knowledge we can determine further characteristics, such as dynamic, electrical, thermal, and chemical properties, etc. With the analysis methods discussed in this chapter, the atoms and molecules at the surface are identified due to their mass or their characteristic electronic energy states. The method of the diffraction of electrons (low energy electron diffraction LEED, reflection high energy electron diffraction RHEED) uses the periodic arrangement from surface atoms to the determination of the crystalline structure. The investigation of the electron work function also uses a collective characteristic, the potential jump at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer, E.: Z. Krist. 110 (1958), pp. 372, 395. Venables, J.A., G.D.T. Spiller & M. Hanbücken Rep. Progr. Phys. 47 (1984), p. 399

    Google Scholar 

  2. Chu WK, Mayer JM, Nicolet MA (1978) Backscattering Spectrometry. Academic Press, New York

    Google Scholar 

  3. Feuerstein A, Grahmann H, Kalbitzer S, Oetzmann H (1976) In: Meyer O, Linker G, Kappeler F (eds) Ion Beam Surface Layer Analysis. Plenum Press, New York

    Google Scholar 

  4. Davis JA (1978) In: Thomas JF, Cachard A (eds) Material Characterization Using Ion Beams. Plenum Press, London

    Google Scholar 

  5. Taglauer E (1982) Appl Surf Sci 13:80

    Article  Google Scholar 

  6. Coburn JW, Kay E (1974) Crit Rev Solid State Sci 4:63

    Google Scholar 

  7. Oechsner H (1995) Secondary Neutral Mass Spectrometry (SNMS) - Recent Methodical Progress and Applications to Fundamental Studies in Particle/Surface Interaction. Int J Mass Spectrom Ion Processes 143:271–282

    Article  Google Scholar 

  8. Lindhard J, Scharff M, Schiǿtt HE (1963) Kgl Dan Vid Selsk Mat Fys Med 33(14):

    Google Scholar 

  9. Smith, D.P.: J. Appl. Phys. 38 (1967), p. 340. Niehus, H. W. Heiland & E. Taglauer: Surf. SCi. Rep. 17 (1993), p. 213, Taglauer. E. In: Ion Spectroscopies for Surface Analysis, Ed.: A. W. Czanderna & D.M. Hercules; Plenum Press, New York, 1991, p. 363

    Google Scholar 

  10. Feldman LC (1978) In: Datz S (ed) Applied Atomic Collision Physics, vol 4. Academic Press, New York, p 261

    Google Scholar 

  11. Ziegler JF (1977) Helium Stopping Power and Ranges in All Elemental Matter vol. 4. Pergamon, New York

    Google Scholar 

  12. Berberich P, Dietsche W, Kinder H, Tate J, Thomson C, Scherzer B (1988) Proc. Int. Conf. High T Supercond. Mater Interlaken, CH.

    Google Scholar 

  13. Benninghoven A (1973) SurfSci 35:427

    Article  Google Scholar 

  14. Wittmaak K (1977) In: Tolk NH, Tully JC, Heiland W, White CW (eds) Inelastic Particle Ion-Surface Collisions. Academic Press, New York, p 153

    Google Scholar 

  15. Magee CW, Harrington WL, Honig RF (1978) Rev Sci Instr 49:477

    Article  Google Scholar 

  16. Liebl H, Harrison W (1976) Int J Mass Spectrom, Ion Phys 22:237

    Article  Google Scholar 

  17. Kato S (ed) (1993) Contributions Third Int. Workshop on Postionization Technique in Surface Analysis Lake Kawaguchi, Japan.

    Google Scholar 

  18. Schoof, H: Untersuchung an anodischen Tantal- und Nioboxidschichten mit AES und SNMS, PhD , Dissertation, TU Clausthal 1981

    Google Scholar 

  19. Coburn JW, Taglauer E, Kav E (1974) J Appl Phys 45:1779

    Article  Google Scholar 

  20. Schweer B, Bay HL (1982) Appl Phys A 29:53

    Article  Google Scholar 

  21. Becker CH (1991) In: Czanderna AW, Hercules DM (eds) Ion Sopectroscopies for Surface Analysis. Plenum Press, New York, p 273

    Chapter  Google Scholar 

  22. Wulff M, Wucher A (1998) In: Gillen G, Lareau R, Bennet J, Stevie F (eds) Quantitation of Single Photon Ionization Laser-SNMS, Secondary Ion Mass Spectrometry SIMS XI. Whiley, New York, pp 665–666

    Google Scholar 

  23. Pellin M, Young CE, Calaway WF, Gruen DM (1984) SurfSci 144:619

    Article  Google Scholar 

  24. Hamagaki M, Kato S, Hara T, Hayashi S (1990) Vacuum 41:1730

    Article  Google Scholar 

  25. Goldstein E (1889) Monatsberichte der Köngl Preuß Akademie der Wissenschaften zu Berlin 33:108

    Google Scholar 

  26. White CW, Simms DL, Tolk NH (1972) Science 117:481

    Article  Google Scholar 

  27. Tsong, I.S.T.: In: Inelastic Particle-Surface Collisions Ed.: Taglauer, E. & W. Heiland Springer Series in Chemical Physics 17 (1981), pp.258

    Google Scholar 

  28. Pierce TB (1974) In: Kane PF, Larabee GB (eds) Characterization of Solid Surfaces. Plenum Press, New York, p 419

    Chapter  Google Scholar 

  29. Merzbacher E, Lewis HW (1958) In: Flügge S (ed) Handbuch d. Physik, vol 34. Springer-Verl., Berlin

    Google Scholar 

  30. Paul H (1984) Nucl Inst Meth B 3:5

    Article  Google Scholar 

  31. Brundle, C.R.: The Application of Electron Spectroscopy to Surface Studies. J. Vac. Sci. Technol 11 (1974) PP. 212 -224

    Google Scholar 

  32. Hedberg CL (ed) (1995) Handbook of Auger Electron Spectroscopy, 3rd edn. Physical Electronics, Eden Prairie

    Google Scholar 

  33. Holm H, Storp S (1980) Methoden zur Untersuchung von Oberflächen. In: Ullmans Enzyklopädie der technischen Chemie, vol 5., pp 519–576

    Google Scholar 

  34. Brundle, C.R:: The Application of Electron Spectroscopy to Surface Studies. J. Vac. Sci. Technol 11 (1974) PP. 212 -224

    Google Scholar 

  35. Seah MP (1983) A Review of Quantitative Auger Electron Spectroscopy. Scanning Electron Microc II:521–536

    Google Scholar 

  36. Seah MP, Dench W (1979) Quantitative Electron Spectroscopy for Surfaces: A Standard Data Base for Electron Inelastic Mean Free Path in Solids. Surf Interf Anal 1(1):2–11

    Article  Google Scholar 

  37. Ertl G, Küppers J (1985) Low Energy Electrons and Surface Chemistry, 2nd edn. Verlag Chemie, Weinheim

    Google Scholar 

  38. Holm R (1982) Scanning Electron Microscopy III. SEM Inc., Chicago, p 1043

    Google Scholar 

  39. Palmberg PW (1976) Quantitative Auger Electron Spectroscopy Using Elemental Sensivity Factors. J Vac Sci Technol 13:214–318

    Article  Google Scholar 

  40. Siegbahn K (1970) Electron Spectroscopy for Chemical Analysis (ESCA) Instrumentation. Phil Trans Roy Soc Land A 268:33–57

    Article  Google Scholar 

  41. Felner-Feldegg H et al (1974) New Developments in ESCA-Instrumentation. J Electron Spectrosc Rel Phenom 5:643–689

    Article  Google Scholar 

  42. Siegbahn K, Nordling C, Johanson G, Hedman J, Heden PF, Hamrin K, Gelius V, Bergmark T, Werme LO, Manne R, Baer Y (1969) ESCA Applied to free molecules. North-Holland, Amsterdam

    Google Scholar 

  43. Cardona M, Ley L (1978) Photoemission in Solids vol. 1. Springer-Verl., Berlin

    Book  Google Scholar 

  44. Spicer WE (1958) Phys Rev 112:225

    Article  Google Scholar 

  45. Baalmann, A.: Dissertation, Universität Osnabrück 1984

    Google Scholar 

  46. Eckhardt H, Fritsche H, Noffke J (1983) J Phys F 14:97

    Article  Google Scholar 

  47. Dose, V.: Rendiconti S.I.F. – CVIII 108 (1989)

    Google Scholar 

  48. Himpsel FJ (1991) Phys Rev B 44:5966

    Article  Google Scholar 

  49. Donath M, Dose V, Ertl K, Kolac U (1990) Phys Rev B 41:5509

    Article  Google Scholar 

  50. Kunz C (ed) (1979) Synchrotron Radiation, Techniques and Applications Topics in Current Physics. Springer, Berlin

    Google Scholar 

  51. Marten H, Meyer-Ehmsen G (1985) Surf Sci 151:570

    Article  Google Scholar 

  52. Rotermund HH, Ertl G, Sesselmnn W (1989) Surf Sci 217:L 383

    Article  Google Scholar 

  53. Rotermund HH, Engel W, Kordesch ME, Ertl G (1990) Nature 343:355

    Article  Google Scholar 

  54. Bauer E, Mundschau M, Swiech W, Telieps W (1991) Vacuum 41:5

    Article  Google Scholar 

  55. Binning G, Rohre H, Gerber C, Weibel E (1983) Phys Rev Lett 50:120

    Article  Google Scholar 

  56. Besocke Delta Phi GmbH

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frey, H. (2015). Physical Basics of Modern Methods of Surface and Thin Film Analysis. In: Frey, H., Khan, H.R. (eds) Handbook of Thin-Film Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05430-3_10

Download citation

Publish with us

Policies and ethics