Place Enrichment by Mining the Web

  • Ana O. Alves
  • Francisco C. Pereira
  • Assaf Biderman
  • Carlo Ratti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5859)


In this paper, we address the assignment of semantics to places. The approach followed consists on leveraging from web online resources that are directly or indirectly related to places as well as from the integration with lexical and semantic frameworks such as Wordnet or Semantic Web ontologies. We argue for the wide applicability and validity of this approach to the area of Ubiquitous Computing, particularly for Context Awareness. We present our system, KUSCO, which searches for semantics associations to a given Point Of Interest (POI). Particular focus is provided to the experimentation and validation aspects.


Noun Phrase Information Extraction Ubiquitous Computing Name Entity Recognition Relevant Page 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hightower, J.: From position to place. In: Proc. of LOCA, pp. 10–12 (2003); UbicompGoogle Scholar
  2. 2.
    Harrison, S., Dourish, P.: Re-place-ing space: the roles of place and space in collaborative systems. In: Proc. of CSCW 1996, pp. 67–76. ACM Press, New York (1996)CrossRefGoogle Scholar
  3. 3.
    Aipperspach, R., Rattenbury, T., Woodruff, A., Canny, J.F.: A quantitative method for revealing and comparing places in the home. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 1–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Lemmens, R., Deng, D.: Web 2.0 and semantic web: Clarifying the meaning of spatial features. In: Semantic Web meets Geopatial Applications. AGILE 2008 (2008)Google Scholar
  5. 5.
    Rattenbury, T., Good, N., Naaman, M.: Towards automatic extraction of event and place semantics from flickr tags. In: SIGIR 2007, pp. 103–110. ACM, New York (2007)CrossRefGoogle Scholar
  6. 6.
    Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P., Tomkins, A.: Visualizing tags over time. In: WWW 2006, pp. 193–202. ACM, New YorkGoogle Scholar
  7. 7.
    Jaffe, A., Naaman, M., Tassa, T., Davis, M.: Generating summaries and visualization for large collections of geo-referenced photographs. In: MIR 2006, pp. 89–98 (2006)Google Scholar
  8. 8.
    Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging web content. In: SIGIR 2004, pp. 273–280. ACM, New York (2004)CrossRefGoogle Scholar
  9. 9.
    Asadi, S., Zhou, X., Jamali, H., Mofrad, H.: Location-based search engines tasks and capabilities: A comparative study. Webology, vol. 4 (December 2007)Google Scholar
  10. 10.
    Ahlers, D., Boll, S.: Location-based web search. In: Scharl, A., Tochtermann, K. (eds.) The Geospatial Web. Springer, London (2007)Google Scholar
  11. 11.
    Tanasescu, V., Domingue, J.: A differential notion of place for local search. In: LOCWEB 2008, pp. 9–16. ACM, New York (2008)CrossRefGoogle Scholar
  12. 12.
    Alani, H., Kim, S., Millard, D., Weal, M., Hall, W., Lewis, P., Shadbolt, N.: Automatic extraction of knowledge from web documents (2003)Google Scholar
  13. 13.
    Alves, A., Antunes, B., Pereira, F.C., Bento, C.: Semantic enrichment of places: Ontology learning from web. Int. J. Know.-Based Intell. Eng. Syst. 13(1), 19–30 (2009)Google Scholar
  14. 14.
    GNS: Geonet names server. national imagery and mapping agency (2009)Google Scholar
  15. 15.
    Toutanova, K., Klein, D., Manning, C.: Feature-rich part-of-speech tagging with a cyclic dependency networkGoogle Scholar
  16. 16.
    Ramshaw, L., Marcus, M.: Text Chunking using Transformation-Based Learning. In: Proc. of WVLC 1995, Cambridge, USA (1995)Google Scholar
  17. 17.
    Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: ACL 2005, pp. 363–370 (2005)Google Scholar
  18. 18.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  19. 19.
    Fellbaum: WordNet: An Electronic Lexical Database, May 1998. MIT Press, Cambridge (1998)Google Scholar
  20. 20.
    Mihalcea, R.: Semcor semantically tagged corpus. Technical report (1998)Google Scholar
  21. 21.
    Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string distance metrics for name-matching tasks. In: IJCAI 2003 Works. on Information Integration, pp. 73–78 (2003)Google Scholar
  22. 22.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  23. 23.
    Porter, M.: An algorithm for suffix stripping, pp. 313–316 (1997)Google Scholar
  24. 24.
    Zipf, G.K.: Human Behaviour and the Principle of Least Effort: an Introduction to Human Ecology. Addison-Wesley, Reading (1949)Google Scholar
  25. 25.
    Yahoo!: Term extraction documentation for search web (2009),
  26. 26.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: IJCAI, pp. 448–453 (1995)Google Scholar
  27. 27.
    Antunes, B., Alves, A., Pereira, F.C.: Semantics of place: Ontology enrichment. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds.) IBERAMIA 2008. LNCS (LNAI), vol. 5290, pp. 342–351. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Alves, A.O.: Semantically enriched places: An approach to deal with the position to place problem. In: Doctoral Colloquium of Ubicomp - Adjunct Proceedings (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ana O. Alves
    • 1
    • 2
  • Francisco C. Pereira
    • 2
  • Assaf Biderman
    • 3
  • Carlo Ratti
    • 3
  1. 1.ISECCoimbra Institute of EngineeringPortugal
  2. 2.CISUCUniversity of CoimbraPortugal
  3. 3.SENSEable City LabMITUSA

Personalised recommendations