Advertisement

AmIQuin - An Ambient Mannequin for the Shopping Environment

  • Alexander Meschtscherjakov
  • Wolfgang Reitberger
  • Thomas Mirlacher
  • Hermann Huber
  • Manfred Tscheligi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5859)

Abstract

We present AmIQuin, a virtual mannequin, which leverages an Ambient Intelligence (AmI) system within a shopping environment. AmIQuin is designed to replace a traditional shop window mannequin in order to enhance a customer’s shopping experience by reacting to the customer’s presence and presenting personalized information. The AmIQuin is implemented as 3D graphic representation of a mannequin displayed on a large screen situated in a shop window. In this paper, we describe the first cycle of an iterative User-Centered Design (UCD) process including the technical implementation of an AmIQuin prototype, along with an initial three days field study. The first prototypical version of the virtual mannequin presented in this paper moves its head or full body towards the beholder in response to recognizing a human face looking at it. We describe technical challenges of deploying an AmI application in the field. Our findings indicate the usefulness of an AmI application within the shopping context and give insights on customers’ attitudes towards shop windows in general and the AmIQuin in particular. Furthermore, the study results reveal customers’ wishes for future versions of the AmIQuin.

Keywords

Ambient Intelligence Field Study Shop Window Embodied Agents Implicit Interaction Mannequin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meschtscherjakov, A., Reitberger, W., Lankes, M., Tscheligi, M.: Enhanced shopping: a dynamic map in a retail store. In: Proc. of UbiComp 2008, pp. 336–339. ACM, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Müller, J., Schmidt, A., Quigley, A., Begole, B.: Pervasive computing will change the future of advertising. In: Workshop at Pervasive 2009 (2009), http://www.pervasiveadvertising.org/
  3. 3.
    Schmidt, A.: Interactive context-aware systems interacting with ambient intelligence. In: Ambient Intelligence. IOS Press, Amsterdam (2005)Google Scholar
  4. 4.
    Reitberger, W., Meschtscherjakov, A., Mirlacher, T., Scherndl, T., Huber, H., Tscheligi, M., Mirnig, N., Pöhr, F.: A persuasive interactive mannequin for shop windows. In: Proc. of Persuasive 2009. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Vogel, D., Balakrishnan, R.: Interactive public ambient displays: transitioning from implicit to explicit, public to personal, interaction with multiple users. In: Proc. of UIST 2004, pp. 137–146. ACM, New York (2004)CrossRefGoogle Scholar
  6. 6.
    Brignall, H., Rogers, Y.: Enticing people to interact with large public displays in public spaces. In: Proc. of INTERACT 2003, pp. 17–24 (2003)Google Scholar
  7. 7.
    McCarthy, J.F., Costa, T.J., Liongosari, E.S.: Unicast, outcast & groupcast: Three steps toward ubiquitous, peripheral displays. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 332–345. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Schmidt, A., Alt, F., Holleis, P., Müller, J., Krüger, A.: Creating log files and click streams for advertisements in physical space. In: Adjunct Proc. of UbiComp 2008, pp. 26–27 (2008)Google Scholar
  9. 9.
    Abbas, Y., Hwang, J.E., Konomi, S., Roussos, G.: Pervasive shopping pervasive shopping: Shop / i don’t need help, i’m just browsing. In: Workshop at Pervasive 2009 (2009)Google Scholar
  10. 10.
    van Doorn, M., van Loenen, E., de Vries, A.P.: Deconstructing ambient intelligence into ambient narratives: the intelligent shop window. In: Proc. of Ambi-Sys 2008, Brussels, Belgium, ICST, pp. 1–8 (2008)Google Scholar
  11. 11.
    Reitberger, W., Obermair, C., Ploderer, B., Meschtscherjakov, A., Tscheligi, M.: Enhancing the Shopping Experience with Ambient Displays: A Field Study in a Retail Store. In: Schiele, B., Dey, A.K., Gellersen, H., de Ruyter, B., Tscheligi, M., Wichert, R., Aarts, E., Buchmann, A. (eds.) AmI 2007. LNCS, vol. 4794, pp. 314–331. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Pinhanez, C., Podlaseck, M.: To frame or not to frame: The role and design of frameless displays in ubiquitous applications. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 340–357. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Bohnenberger, T., Jacobs, O., Jameson, A., Aslan, I.: Decision-theoretic planning meets user requirements: Enhancements and studies of an intelligent shopping guide. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 279–296. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Sukaviriya, N., Podlaseck, M., Kjeldsen, R., Levas, A., Pingali, G., Pinhanez, C.: Augmenting a retail environment using steerable interactive displays. In: Proc. of CHI 1992, pp. 978–979. ACM, New York (1992)Google Scholar
  15. 15.
    Spassova, L., Wasinger, R., Baus, J., Kruger, A.: Product associated displays in a shopping scenario. In: ISMAR 2005: International Symposium on Mixed and Augmented Reality, Washington, DC, USA, pp. 210–211. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  16. 16.
    Cheng, C.M., Chung, M.F., Yu, M.Y., Ouhyoung, M., Chu, H.H., Chuang, Y.Y.: Chromirror: a real-time interactive mirror for chromatic and color-harmonic dressing. In: Proc. of CHI 2008, pp. 2787–2792. ACM, New York (2008)Google Scholar
  17. 17.
    Zhang, W., Matsumoto, T., Liu, J., Chu, M., Begole, B.: An intelligent fitting room using multi-camera perception. In: Proc. of IUI 2008, pp. 60–69. ACM, New York (2008)CrossRefGoogle Scholar
  18. 18.
    Underhill, P.: Why We Buy: The Science of Shopping, June 2000. Simon & Schuster, New York (2000)Google Scholar
  19. 19.
    Fraunhofer IIS: Real time face detector (2008), http://www.iis.fraunhofer.de/EN/bf/bv/kognitiv/biom/dd.jsp
  20. 20.
    Kueblbeck, C., Ernst, A.: Face detection and tracking in video sequences using the modified census transformation. Journal on Image and Vision Computing 24(6), 564–572 (2006)CrossRefGoogle Scholar
  21. 21.
    Crytec: Cryengine 2 (2008), http://www.cryengine2.com/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alexander Meschtscherjakov
    • 1
  • Wolfgang Reitberger
    • 1
  • Thomas Mirlacher
    • 1
  • Hermann Huber
    • 1
  • Manfred Tscheligi
    • 1
  1. 1.ICT&S CenterUniversity of SalzburgSalzburgAustria

Personalised recommendations