Skip to main content

Technische Prinzipien

  • Chapter
Refraktive Chirurgie

Zusammenfassung

Beim Laser (»light amplification by stimulated emission of radiation«) handelt es sich um eine Lichtquelle, die aufgrund der guten Fokussierbarkeit und der Möglichkeit sehr kurze Pulse zu erzeugen, nicht nur hohe Leistungen sondern auch extrem hohe Intensitäten (Leistungsdichten) generieren kann (◘ Tab. 8.1). Je nach Laserparameter können unterschiedliche Arten von Wechselwirkungen auftreten und das Gewebe bei der Bestrahlung gezielt verändern (◘ Abb. 8.1). Zu den Wechselwirkungsprozessen gehören: photochemische Wechselwirkungen, Koagulation und Vaporisation sowie die Photoablation und Photodisruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

8.1 3. Literatur

  1. Boulnois JL (1986) Photophysical processes in recent medical laser developments: a review; Lasers in Medical Science 1: 47–66

    Article  Google Scholar 

  2. Oraevsky AA, Jacques SL, Pettit GH, Saidi IS, Tittel FK, Henry PD (1992) XeCl laser ablation of atherosclerotic aorta: optical properties and energy pathways. Lasers Surg Med 12: 585–597

    Article  PubMed  CAS  Google Scholar 

  3. Phillips D, Roberts JA (Hrsg) (1982) Photophysics of Synthetic Polymers. The Royal Institution, Science Reviews

    Google Scholar 

  4. Srinivasan R, Mayne–Banton V (1982) Self–developing photoetching of poly(ethylene terephthalate) films by far–ultraviolet excimer laser radiation. Appl Phys Lett 41(6): 576–578

    Article  CAS  Google Scholar 

  5. Srinivasan R, Leigh WJ (1982) Ablative photodecomposition: action on far–ultraviolet (193 nm) laser radiation on poly(ethylene terephthalate) films. J Am Chem Soc 104: 6784–6785

    Article  CAS  Google Scholar 

  6. Srinivasan R, Braren B, Dreyfus RW (1987) Ultraviolet laser ablation of polyimide films. J Appl Phys 61(1): 372–376

    Article  CAS  Google Scholar 

  7. Srinivasan R (1990) Ablation of polymers and tissue by ultraviolet lasers. Proc SPIE 1064: 77–82

    Google Scholar 

  8. Wolbarsht M (1984) Laser surgery: CO2or HF. IEEE J Qant Electron QE–20(12): 1427–1432

    Article  Google Scholar 

  9. Walsh JT, Flotte TJ, Deutsch TF (1989) Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage. Lasers Surg Med 9: 314–326

    Article  PubMed  Google Scholar 

  10. Zweig AD, Frenz M, Romano V, Weber HP (1988) A comparative study of laser tissue interaction at 2.94μm and 10.6μm. Appl Phys B 47:259–265

    Article  Google Scholar 

  11. Zweig AD (1991) A thermo–mechanical model for laser ablation. J Appl Phys 70(3): 1684–1691

    Article  Google Scholar 

8.2 3. Literatur

  1. Basting D, Marowsky G (2005) Excimer Laser Technology. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  2. Delmdahl R (2010) The excimer laser: Precision engineering. Nature Photonics 4: 286

    Article  CAS  Google Scholar 

8.3.7 Literatur

  1. Birngruber R, Puliafito CA, Gawande A, Lin WZ, Schoenlein RW, Fujimoto JG (1987) Femtosecond Laser Tissue Interactions — Retinal Injury Studies. IEEE J Quantum Electron 23(10):1836–44

    Article  Google Scholar 

  2. Kautek W, Mitterer S, Krüger J, Husinsky W, Grabner G (1994) Femtosecond–Pulse Laser Ablation of Human Corneas. Appl Phys A 58:513–8

    Article  Google Scholar 

  3. Chung SH, Mazur E (2009) Surgical applications of femtosecond lasers. J Biophotonics 2(10):557–72

    Article  PubMed  Google Scholar 

  4. Siegman AE (1986) Lasers. University Science Books, Stanford University

    Google Scholar 

  5. Niemz M (2004) Laser tissue interactions: Fundamentals and Applications, 3rd ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  6. Vogel A, Noak J, Nahen K, Theisen D, Busch S, Parlitz U, et al. (1999) Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Applied Physics B 68(2): 271–80

    Article  CAS  Google Scholar 

  7. Vogel A, Noak J, Hüttmann G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissue. Applied Physics B 81(8):1015–47

    Article  CAS  Google Scholar 

  8. Mrochen M, Donges A, Korn G (2006) Femtosecond laser for refractive corneal surgery: foundations, mode of action and clinical applications. Ophthalmologe 103(12):1005–13

    Article  PubMed  CAS  Google Scholar 

  9. Le Harzic R, Bückle R, Wüllner C (2005) Laser safety aspects for refractive surgery with femtosecond pulses. Medical Laser Application 20:233–8

    Article  Google Scholar 

  10. von Jagow B, Kohnen T. Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography. J Cataract Refract Surg. 2009;35(1): 35–41

    Article  Google Scholar 

  11. Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF (2008) Biomechanical and wound healing characteristics of corneas after excimer laser keratorefractive surgery: is there a difference between advanced surface ablation and sub–Bowman's keratomileusis? J Refract Surg 24(1):S90–6

    PubMed  Google Scholar 

  12. Dawson DG, Kramer TR, Grossniklaus HE, Waring GO, 3rd, Edelhauser HF (2005) Histologic, ultrastructural, and immunofluorescent evaluation of human laser–assisted in situ keratomileusis corneal wounds. Arch Ophthalmol 123(6):741–56

    Article  PubMed  Google Scholar 

  13. Knorz MC, Vossmerbaeumer U (2008) Comparison of flap adhesion strength using the Amadeus microkeratome and the IntraLase iFS femtosecond laser in rabbits. J Refract Surg 24(9):875–8

    PubMed  Google Scholar 

  14. Kohnen T, Klaproth OK, Derhartunian V, Kook D (2010) Results of 308 consecutive femtosecond laser cuts for LASIK. Ophthalmologe 107(5):439–45

    Article  PubMed  CAS  Google Scholar 

  15. Blum M, Kunert K, Schroder M, Sekundo W (2010) Femtosecond lenticule extraction for the correction of myopia: preliminary 6–month results. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 248(7):1019–27

    PubMed  Google Scholar 

  16. Kook D, Derhartunian V, Bug R, Kohnen T (2009) Top–hat shaped corneal trephination for penetrating keratoplasty using the femtosecond laser: a histomorphological study. Cornea 28(7):795–800

    Article  PubMed  Google Scholar 

  17. Cheng YY, Schouten JS, Tahzib NG, Wijdh RJ, Pels E, van Cleynenbreugel H, et al. (2009) Efficacy and safety of femtosecond laserassisted corneal endothelial keratoplasty: a randomized multicenter clinical trial. Transplantation 88(11):1294–302

    Article  PubMed  Google Scholar 

  18. Pinero DP, Alio JL, El Kady B, Coskunseven E, Morbelli H, Uceda–Montanes A, et al. (2009) Refractive and aberrometric outcomes of intracorneal ring segments for keratoconus: mechanical versus femtosecond–assisted procedures. Ophthalmology 116(9): 1675–87

    Article  PubMed  Google Scholar 

  19. Ertan A, Karacal H (2008) Factors influencing flap and INTACS decentration after femtosecond laser application in normal and keratoconic eyes. J Refract Surg 24(8):797–801

    PubMed  Google Scholar 

  20. Holzer MP, Mannsfeld A, Ehmer A, Auffarth GU (2009) Early outcomes of INTRACOR femtosecond laser treatment for presbyopia. J Refract Surg 25(10):855–61

    Article  PubMed  Google Scholar 

  21. Nagy Z, Takacs A, Filkorn T, Sarayba M (2009) Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J Refract Surg 25(12):1053–60

    Article  PubMed  Google Scholar 

  22. Kook D, Bühren J, Klaproth OK, Bauch AS, Derhartunian V, Kohnen T (2011) Astigmatic keratotomy with the femtosecond laser: Correction of high astigmatisms after keratoplasty. Ophthalmologe 108(2):143–50

    Article  PubMed  CAS  Google Scholar 

8.4.9 Literatur

  1. Munnerlyn CR, Koons SJ, Marshall J (1988) Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg 14(1): 46–52

    PubMed  CAS  Google Scholar 

  2. Kohnen T, Mahmoud K, Bühren J (2005) Comparison of Corneal Higher–Order Aberrations Induced by Myopic and Hyperopic LASIK. Oph–thalmology 112: 1692–1698

    Google Scholar 

  3. Applegate RA, Marsack JD, Ramos R, Sarver EJ (2003) Interaction between aberrations to improve or reduce visual performance. J Cataract Refract Surg 29(8):1487–95

    Article  PubMed  Google Scholar 

  4. Mrochen M, Donitzky C, Wüllner C, Löffler J (2004) Wavefront–optimized ablation profiles: theoretical background. J Cataract Refract Surg 30(4):775–85

    Article  PubMed  Google Scholar 

  5. Stonecipher KG, Kezirian GM (2008) Wavefront–optimized versus wavefront–guided LASIK for myopic astigmatism with the ALLEGRETTO WAVE: three–month results of a prospective FDA trial. J Refract Surg 24(4):S424–30

    PubMed  Google Scholar 

  6. Atchison DA, Smith G (2000) Optics of the human eye. 1st ed. Butterworth–Heinemann, Oxford

    Google Scholar 

  7. Manns F, Ho A, Parel JM, Culbertson W (2002) Ablation profiles for wavefront–guided correction of myopia and primary spherical aberration. J Cataract Refract Surg 28(5):766–74

    Article  PubMed  Google Scholar 

  8. Villa C, Jiménez JR, Anera RG, Gutiérrez R, Hita E (2009) Visual performance after LASIK for a Q–optimized and a standard ablation algorithm. Appl Opt 48(30):5741–7

    Article  PubMed  Google Scholar 

  9. Koller T, Iseli HP, Hafezi F, Mrochen M, Seiler T (2006) Q–factor customized ablation profile for the correction of myopic astigmatism. J Cata–ract Refract Surg 32(4):584–9

    Article  Google Scholar 

  10. Knorz MC, Jendritza B (2000) Topographically–guided laser in situ keratomileusis to treat corneal irregularities. Ophthalmology 107(6):1138–43

    Article  PubMed  CAS  Google Scholar 

  11. Kanellopoulos AJ (2005) Topography–guided custom retreatments in 27 symptomatic eyes. J Refract Surg 21(5):S513–8

    PubMed  Google Scholar 

  12. Kymionis GD, Panagopoulou SI, Aslanides IM, Plainis S, Astyrakakis N, Pallikaris IG (2004) Topographically supported customized ablation for the management of decentered laser in situ keratomileusis. Am J Ophthalmol 137(5):806–11

    Article  PubMed  Google Scholar 

  13. Hafezi F, Jankov M, Mrochen M, Wüllner C, Seiler T (2006) A new customized ablation algorithm for the treatment of central steep islands after refractive laser surgery. J Cataract Refract Surg 32(5):717–21

    Article  PubMed  Google Scholar 

  14. Hafezi F, Mrochen M, Iseli HP, Seiler T (2005) A 2–step procedure to enlarge small optical zones after photorefractive keratectomy for high myopia. J Cataract Refract Surg 31(12):2254–6

    Article  PubMed  Google Scholar 

  15. Kohnen T, Buhren J (2004) Derzeitiger Stand der wellenfrontgeführten Hornhautchirurgie zur Korrektur von Refraktionsfehlern. Ophthalmo–loge 101(6): 631–45; quiz 646–7

    Google Scholar 

  16. Mrochen M, Krueger RR, Bueeler M, Seiler T (2002) Aberrationsensing and wavefront–guided laser in situ keratomileusis: management of decentered ablation. J Refract Surg 18(4): 418–29

    PubMed  Google Scholar 

  17. Bühren J, Kohnen T (2006) Factors affecting the change in lowerorder and higher–order aberrations after wavefront–guided laser in situ keratomileusis for myopia with the Zyoptix 3.1 system. J Cataract Refract Surg 32(7):1166–74

    Article  PubMed  Google Scholar 

  18. Mrochen M, Bueeler M, Donitzky C, Seiler T (2008) Optical ray tracing for the calculation of optimized corneal ablation profiles in refractive treatment planning. J Refract Surg 24(4):S446–51

    PubMed  Google Scholar 

  19. Koller T, Seiler T (2006) Four corneal presbyopia corrections: simulations of optical consequences on retinal image quality. J Cataract Refract Surg 32(12):2118–23

    Article  PubMed  Google Scholar 

  20. Seiler T, Genth U, Holschbach A, Derse M (1993) Aspheric photorefractive keratectomy with excimer laser. Refract Corneal Surg 9(3):166–72

    PubMed  CAS  Google Scholar 

  21. Mierdel P, Krinke HE, Wiegand W, Kaemmerer M, Seiler T 1997 [Measuring device for determining monochromatic aberration of the human eye] Ophthalmologe 94(6):441–5

    Article  PubMed  CAS  Google Scholar 

  22. Oshika T, Klyce SD, Applegate RA, Howland HC, El Danasoury MA (1999) Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol 127(1):1–7

    Article  PubMed  CAS  Google Scholar 

  23. Gibralter R, Trokel SL (1994) Correction of irregular astigmatism with the excimer laser. Ophthalmology 101(7):1310–4; discussion 1314–5

    Google Scholar 

8.5.4 Literatur

  1. Fay AM, Trokel SL, Myers JA /1992) Pupil diameter and the principal ray. J Cataract Refract Surg 18(4):348–51

    PubMed  CAS  Google Scholar 

  2. Pande M, Hillman JS (1993) Optical zone centration in keratorefractive surgery. Entrance pupil center, visual axis, coaxially sighted corneal reflex, or geometric corneal center? Ophthalmology 100(8):1230–7

    PubMed  CAS  Google Scholar 

  3. Uozato H, Guyton DL (1987) Centering corneal surgical procedures. Am J Ophthalmol 103(3 Pt 1):264–75. Erratum in: Am J Ophthalmol 103(6):852

    Google Scholar 

  4. Nepomuceno RL, Boxer BS, Wachler, Kim JM, Scruggs R, Sato M (2004) Laser in situ keratomileusis for hyperopia with the LADARVision 4000 with centration on the coaxially sighted corneal light reflex. J Cataract Refract Surg 30(6):1281–6

    Article  PubMed  Google Scholar 

  5. Bueler M (1974) Optical zone and single pulse centration in corneal refractive laser surgery. Dissertation, Swiss Federal Institute of Technology, Zürich

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg New York

About this chapter

Cite this chapter

Schumacher, S. et al. (2011). Technische Prinzipien. In: Refraktive Chirurgie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05406-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05406-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05405-1

  • Online ISBN: 978-3-642-05406-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics