Skip to main content

Lamelläre Excimerlaserchirurgie (LASIK, Femto-LASIK)

  • Chapter
Book cover Refraktive Chirurgie

Zusammenfassung

»Die Laser-in-situ-Keratomileusis (LASIK) stellt heute ein sicheres, effektives, vorhersagbares und effizientes Verfahren dar; sie ist der Goldstandard der dauerhaften keratorefraktiven Korrektur von Myopie, Hyperopie und/oder Astigmatismus.« So, oder so ähnlich, beginnen viele Fachveröffentlichungen zum Thema LASIK. Weltweit werden jährlich mehrere Millionen Eingriffe durchgeführt, und die LASIK erfreut sich bei den Patienten eines guten Rufes [44, 46]. Wenn heute von lamellärer Excimerlaserchirurgie gesprochen wird, ist damit die LASIK gemeint. Dabei darf eines nicht vergessen werden: Die LASIK ist und bleibt eine Operation am Auge, die neben der exakten medizinischen Diagnostik und operativen Umsetzung auch eine optische Expertise benötigt. Eine umfassende Diagnostik sowie deren Verständnis bilden die Basis des Operationserfolges. Das intraoperative Procedere muss immer eine Komplikationsrate von 0% anstreben. Die LASIK ist nur dann sicher, wenn die zugrundeliegenden optischen, biomechanischen und operativen Prinzipien vom Operateur beherrscht werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alio JL, Ortiz D, Muftuoglu O, Garcia MJ (2009) Ten years after photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) for moderate to high myopia (control–matched study). Br J Ophthalmol 93:1313–8

    Article  PubMed  CAS  Google Scholar 

  2. Arbelaez MC, Vidal C, Arba-Mosquera S (2009) Clinical outcomes of corneal wavefront customized ablation strategies with SCHWIND CAM in LASIK treatments. Ophthalmic Physiol Opt 29:549–56

    Article  PubMed  Google Scholar 

  3. Azar DT, Ghanem RC, de la Cruz J, Hallak JA, Kojima T, Al–Tobaigy FM, et al. (2008) Thin–flap (sub–Bowman keratomileusis) versus thick–flap laser in situ keratomileusis for moderate to high myopia: case–control analysis. J Cataract Refract Surg 34:2073–8

    Article  PubMed  Google Scholar 

  4. Buhren J, Kook D, Yoon G, Kohnen T (2010) Detection of subclinical keratoconus by using corneal anterior and posterior surface aberrations and thickness spatial profiles. Invest Ophthalmol Vis Sci 51:3424–32

    Article  PubMed  Google Scholar 

  5. Buhren J, Martin T, Kuhne A, Kohnen (2009) Correlation of aberrometry, contrast sensitivity, and subjective symptoms with quality of vision after LASIK. J Refract Surg 25:559–68

    PubMed  Google Scholar 

  6. Buhren J, Strenger A, Martin T, Kohnen T (2007) [Wavefront aberrations and subjective quality of vision after wavefront–guided LASIK: first results]. Ophthalmologe 104:688–92, 94–6

    Google Scholar 

  7. Buhren J, Yoon G, Kenner S, MacRae S, Huxlin K (2007) The effect of optical zone decentration on lower–and higher–order aberrations after photorefractive keratectomy in a cat model. Invest Ophthalmol Vis Sci 48:5806–14

    Article  PubMed  Google Scholar 

  8. Calvo R, McLaren JW, Hodge DO, Bourne WM, Patel SV (2010) Corneal aberrations and visual acuity after laser in situ keratomileusis: femtosecond laser versus mechanical microkeratome. Am J Ophthalmol 149:785–93

    Article  PubMed  Google Scholar 

  9. Chang J (2008) Cyclotorsion during laser in situ keratomileusis. J Cataract Refract Surg 34:1720–6

    Article  PubMed  Google Scholar 

  10. Chaurasia SS, Luengo Gimeno F, Tan K, Yu S, Tan DT, Beuerman RW, et al. (2010) In vivo real–time intraocular pressure variations during LASIK flap creation. Invest Ophthalmol Vis Sci 51:4641–5

    Article  PubMed  Google Scholar 

  11. Condon PI, O'Keefe M, Binder PS (2007) Long–term results of laser in situ keratomileusis for high myopia: risk for ectasia. J Cataract Refract Surg 33:583–90

    Article  PubMed  Google Scholar 

  12. Conway ML, Wevill M, Benavente-Perez A, Hosking SL (2010) Ocular blood–flow hemodynamics before and after application of a laser in situ keratomileusis ring. J Cataract Refract Surg 36: 268–72

    Article  PubMed  Google Scholar 

  13. Dirani M, Couper T, Yau J, Ang EK, Islam FM, Snibson GR, et al. (2010) Long–term refractive outcomes and stability after excimer laser surgery for myopia. J Cataract Refract Surg 36:1709–17

    Article  PubMed  Google Scholar 

  14. Dupps WJ, Jr., Kohnen T, Mamalis N, Rosen ES, Koch DD, Obstbaum SA, et al. (2010) Standardized graphs and terms for refractive surgery results. J Cataract Refract Surg 37:1–3

    Article  Google Scholar 

  15. Durrie DS, Slade SG, Marshall J (2008) Wavefront–guided excimer laser ablation using photorefractive keratectomy and sub–Bowman's keratomileusis: a contralateral eye study. J Refract Surg 24: S77–84

    PubMed  Google Scholar 

  16. Eleftheriadis H, Prandi B, Diaz-Rato A, Morcillo M, Sabater JB (2005) The effect of flap thickness on the visual and refractive outcome of myopic laser in situ keratomileusis. Eye (Lond) 19:1290–6

    CAS  Google Scholar 

  17. Heichel J, Hammer T, Sietmann R, Duncker GI, Wilhelm F (2010) Vergleich des Femtec Femtosekundenlasers und des Zyoptix XP Mikrokeratoms. Rasterelektronenmikroskopische Gegenuberstellung lamellarer Keratotomien. Ophthalmologe 107:333–40

    Article  PubMed  CAS  Google Scholar 

  18. Hernandez-Verdejo JL, Teus MA, Roman JM, Bolivar G (2007) Porcine model to compare real–time intraocular pressure during LASIK with a mechanical microkeratome and femtosecond laser. Invest Ophthalmol Vis Sci 48:68–72

    Article  PubMed  Google Scholar 

  19. Holzer MP, Rabsilber TM, Auffarth GU (2006) Femtosecond laserassisted corneal flap cuts: morphology, accuracy, and histopathology. Invest Ophthalmol Vis Sci 47:2828–31

    Article  PubMed  Google Scholar 

  20. Jagow B, Kuhne C, Kohnen T (2009) Vergleich zwischen praoperativer Ultraschallpachymetrie und intraoperativer optischer Koharenzpachymetrie an 513 Augen. Klin Monbl Augenheilkd 226: 645–8

    Article  PubMed  Google Scholar 

  21. Kohlhaas M, Sporl E, Bohm AG, Pollack K, Sandner D, Pillunat LE (2005) Applanationstonometrie bei Normalpatienten und Patienten nach LASIK. Klin Monbl Augenheilkd 222:823–6

    Article  PubMed  CAS  Google Scholar 

  22. Kohnen T (1999) Kriterien zur Evaluierung und Publikation von refraktiv–chirurgischen Eingriffen. Klin Monbl Augenheilkd 215: 326–8

    Article  PubMed  CAS  Google Scholar 

  23. Kohnen T, Klaproth OK, Derhartunian V, Kook D (2010) [Results of 308 consecutive femtosecond laser cuts for LASIK]. Ophthalmologe 107:439–45

    Article  PubMed  CAS  Google Scholar 

  24. Kohnen T, Knorz MC, Neuhann T (2007) Bewertung und Qualitatssicherung refraktiv–chirurgischer Eingriffe durch die DOG und den BVA. Ophthalmologe 104:719–26

    Article  PubMed  CAS  Google Scholar 

  25. Lackerbauer CA, Grueterich M, Kojetinsky C, Ulbig M, Kollias A (2009) Customizing the Amadeus II microkeratome: evaluation of cut quality with various settings using electron microscopy. Eur J Ophthalmol 19:743–7

    PubMed  Google Scholar 

  26. Lee JK, Nkyekyer EW, Chuck RS (2009) Microkeratome complications. Curr Opin Ophthalmol 20:260–3

    Article  PubMed  Google Scholar 

  27. Maldonado-Codina C, Morgan PB, Efron N (2001) Thermal consequences of photorefractive keratectomy. Cornea 20:509–15

    Article  PubMed  CAS  Google Scholar 

  28. Marcos S, Barbero S, Llorente L, Merayo-Lloves J (2001) Optical response to LASIK surgery for myopia from total and corneal aberration measurements. Invest Ophthalmol Vis Sci 42:3349–56

    PubMed  CAS  Google Scholar 

  29. Mian SI, Li AY, Dutta S, Musch DC, Shtein RM (2009) Dry eyes and corneal sensation after laser in situ keratomileusis with femtosecond laser flap creation Effect of hinge position, hinge angle, and flap thickness. J Cataract Refract Surg 35:2092–8

    Article  PubMed  Google Scholar 

  30. Mirshahi A, Kohnen T (2005) Effect of microkeratome suction during LASIK on ocular structures. Ophthalmology 112:645–9

    Article  PubMed  Google Scholar 

  31. Moreno-Barriuso E, Lloves JM, Marcos S, Navarro R, Llorente L, Barbero S (2001) Ocular aberrations before and after myopic corneal refractive surgery: LASIK–induced changes measured with laser ray tracing. Invest Ophthalmol Vis Sci 42:1396–403

    PubMed  CAS  Google Scholar 

  32. Mrochen M, Eldine MS, Kaemmerer M, Seiler T, Hutz W (2001) Improvement in photorefractive corneal laser surgery results using an active eye–tracking system. J Cataract Refract Surg 27:1000–6

    Article  PubMed  CAS  Google Scholar 

  33. Munoz G, Albarran-Diego C, Ferrer-Blasco T, Garcia-Lazaro S, Cervino-Exposito A (2010) Long–term comparison of corneal aberration changes after laser in situ keratomileusis: mechanical microkeratome versus femtosecond laser flap creation. J Cataract Refract Surg 36:1934–44

    Article  PubMed  Google Scholar 

  34. Nettune GR, Pflugfelder SC (2010) Post–LASIK tear dysfunction and dysesthesia. Ocul Surf 8:135–45

    PubMed  Google Scholar 

  35. Neuhann IM, Lege BA, Bauer M, Hassel JM, Hilger A, Neuhann TF (2008) Online optical coherence pachymetry as a safety measure for laser in situ keratomileusis treatment in 1859 cases. J Cataract Refract Surg 34:1273–9

    Article  PubMed  Google Scholar 

  36. Patel SV, Bourne WM (2009) Corneal endothelial cell loss 9 years after excimer laser keratorefractive surgery. Arch Ophthalmol 127:1423–7

    Article  PubMed  Google Scholar 

  37. Patel SV, McLaren JW, Kittleson KM, Bourne WM (2010) Subbasal nerve density and corneal sensitivity after laser in situ keratomileusis: femtosecond laser vs mechanical microkeratome. Arch Ophthalmol 128:1413–9

    Article  PubMed  Google Scholar 

  38. Porter J, Yoon G, MacRae S, Pan G, Twietmeyer T, Cox IG, et al. (2005) Surgeon offsets and dynamic eye movements in laser refractive surgery. J Cataract Refract Surg 31:2058–66

    Article  PubMed  Google Scholar 

  39. Qazi MA, Sanderson JP, Mahmoud AM, Yoon EY, Roberts CJ, Pepose JS (2009) Postoperative changes in intraocular pressure and corneal biomechanical metrics Laser in situ keratomileusis versus laser–assisted subepithelial keratectomy. J Cataract Refract Surg 35:1774–88

    Article  PubMed  Google Scholar 

  40. Reinstein DZ, Archer TJ, Gobbe M, Johnson N (2010) Accuracy and reproducibility of artemis central flap thickness and visual outcomes of LASIK with the Carl Zeiss Meditec VisuMax femtosecond laser and MEL 80 excimer laser platforms. J Refract Surg 26:107–19

    Article  PubMed  Google Scholar 

  41. Rolfs M (2009) Microsaccades: small steps on a long way. Vision Res 49:2415–41

    Article  PubMed  Google Scholar 

  42. Rosa AM, Neto Murta J, Quadrado MJ, Tavares C, Lobo C, Van Velze R, et al. (2009) Femtosecond laser versus mechanical microkeratomes for flap creation in laser in situ keratomileusis and effect of postoperative measurement interval on estimated femtosecond flap thickness. J Cataract Refract Surg 35:833–8

    Article  PubMed  Google Scholar 

  43. Rosman M, Alio JL, Ortiz D, Perez–Santonja JJ (2010) Refractive Stability of LASIK with the VISX 20/20 Excimer Laser vs ZB5M Phakic IOL Implantation in Patients with High Myopia (>–10.00 D): A 10–Year Retrospective Study. J Refract Surg 1–8

    Google Scholar 

  44. Sakimoto T, Rosenblatt MI, Azar DT (2006) Laser eye surgery for refractive errors. Lancet 367:1432–47

    Article  PubMed  Google Scholar 

  45. Salomao MQ, Ambrosio R, Jr., Wilson SE (2009) Dry eye associated with laser in situ keratomileusis: Mechanical microkeratome versus femtosecond laser. J Cataract Refract Surg 35:1756–60

    Article  PubMed  Google Scholar 

  46. Solomon KD, Fernandez de Castro LE, Sandoval HP, Biber JM, Groat B, Neff KD, et al. (2009) LASIK world literature review: quality of life and patient satisfaction. Ophthalmology 116:691–701

    Article  PubMed  Google Scholar 

  47. US–FDA (2004) STAR S4 Excimer Laser System with variable spot scanning (VSS) and WaveScan WaveFront System. P930016/S017

    Google Scholar 

  48. von Jagow B, Kohnen T (2009) Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography. J cataract Refract Surg 35:35–41

    Article  Google Scholar 

  49. Vossmerbaeumer U, Jonas JB (2008) Regularity of human corneal flaps prepared by femtosecond laser technology. J Refract Surg 24:645–8

    PubMed  Google Scholar 

  50. Wang L, Koch DD (2008) Residual higher–order aberrations caused by clinically measured cyclotorsional misalignment or decentration during wavefront–guided excimer laser corneal ablation. J Cataract Refract Surg 34:2057–62

    Article  PubMed  Google Scholar 

  51. Waring GO, 3rd (2009) One–kilohertz eye tracker and active intraoperative torsion detection in the NIDEK CXIII and Quest excimer lasers. J Refract Surg 25:S931–3

    Article  PubMed  Google Scholar 

  52. Kohnen T, Steinkamp GW, Schnitzler EM, Baumeister M, Wellermann G, Bühren J et al. (2001) LASIK mit superiorem Hinge und Scanning–Spot–Excimerlaserablation zur Korrektur von Myopie und myopem Astigmatismus. Einjahresergebnisse einer prospektiven klinischen Studie an 100 Augen. Ophthalmologe 98: 1044–54

    Article  PubMed  CAS  Google Scholar 

  53. Kohnen T, Mirshahi A, Cichocki M, Bühren J, Steinkamp GW (2003) Laser–in–situ–Keratomileusis zur Korrektur von Hyperopie und hyperopem Astigmatismus mit Scanning–Spot–Excimer–Laser. Einjahresergebnisse einer prospektiven klinischen Studie. Ophthalmologe 100:1071–8

    Article  PubMed  CAS  Google Scholar 

  54. Kohnen T, Bühren J, Kühne C, Mirshahi A (2004) Wavefront–guided LASIK with the Zyoptix 3.1 system for the correction of myopia and compound myopic astigmatism with 1–year follow–up: clinical outcome and change in higher order aberrations. Ophthalmology 111:2175–85

    Article  PubMed  Google Scholar 

  55. Knorz MC, Jendritza B, Liermann A, Hugger P, Liesenhoff H. [LASIK for myopia correction. 2–year follow–up]. Ophthalmologe. 1998; 95:494–8

    Article  PubMed  CAS  Google Scholar 

  56. Knorz MC, Neuhann T. [Correction of myopia and astigmatism using topography–assisted laser in situ keratomileusis (TopoLink LASIK)]. Ophthalmologe. 2000; 97:827–31

    Article  PubMed  CAS  Google Scholar 

  57. Mrochen M, Kaemmerer M, Seiler T. Clinical results of wavefrontguided laser in situ keratomileusis 3 months after surgery. J Cataract Refract Surg. 2001; 27:201–7

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg New York

About this chapter

Cite this chapter

Kohnen, T., Klaproth, O.K. (2011). Lamelläre Excimerlaserchirurgie (LASIK, Femto-LASIK). In: Refraktive Chirurgie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05406-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05406-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05405-1

  • Online ISBN: 978-3-642-05406-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics