Skip to main content

Ultraviolet insolation and the tropical rainforest: Altitudinal variations, Quaternary and recent change, extinctions, and the evolution of biodiversity

  • Chapter
  • First Online:
Tropical Rainforest Responses to Climatic Change

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Ultraviolet light occurs in three wavebands. UV-A is the longest waveband (>315 nm) which is close to visible light and is of limited biological significance. UV-B (280–315 nm) is damaging and mutagenic to living organisms. UV-C (<280 nm) is lethal to all life, but is fortunately absorbed in the stratosphere, so does not reach the surface of the Earth in sunlight. It is therefore toUV-B that we must turn our chief attention. This, like UV-C, is also partly absorbed by ozone in the stratosphere, but some reaches the Earth’s surface. Recent concerns about the ‘‘Ozone Hole’’ have focussed attention on polar regions, but in fact tropical regions have fairly low ozone concentrations in the stratosphere above them (Smith and Warr, 1991). The result is that, given their high overall insolation resulting from the low latitude, tropical regions have rather high UV-B levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, I., Day, J. P., MacDonald, M. V., and Ingram, D. S. (1991) Haploid culture and UV mutagenesis in rapid-cycling Brassica napus for the generation of resistance to chlorsulfuron and Alternaria brassicicola. Annals of Botany, 67, 519–521.

    Google Scholar 

  • Atwell, B. J., Kriedemann, P. E., and Turnbull, C. G. N. (Eds.) (1999) Plants in Action: Adaptation in Nature, Performance in Cultivation. Macmillan, South Yarra, Australia.

    Google Scholar 

  • Aubry, M.-P., Lucas, S. G., and Berggren, W. A. (Eds.) (1998) Late Paleocene–Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records. Columbia University Press, New York.

    Google Scholar 

  • Austin, J., Butchart, N., and Shine, K. P. (1992) Possibility of an Arctic ozone hole in a doubled- CO2 climate. Nature, 360, 221–225.

    Article  CAS  Google Scholar 

  • Bennett, K. D. (1990) Milankovitch Cycles and their effects on species in ecological and evolutionary time. Paleobiology, 16, 11–21.

    Google Scholar 

  • Bennett, K. D. (2004) Continuing the debate on the role of Quaternary environmental change for macroevolution. Philosophical Trans. Royal Society London B, 359, 295–303.

    Article  CAS  Google Scholar 

  • Bjorn, L. O. and McKenzie, R. L. (2007) Attempts to probe the ozone layer and the ultraviolet- B levels of the past. Ambio, 36, 366–371.

    Article  Google Scholar 

  • Blaustein, A. R., Belden, L. K., Olson, D. H., Green, D. M., Root, T. L., and Kiesecker, J. M. (2001) Amphibian breeding and climate change. Conservation Biology, 15, 1804–1809.

    Article  Google Scholar 

  • Blaustein, A. R., Romansic, J. M., Kiesecker, J. M., and Hatch, A. C. (2003) Ultraviolet radiation, toxic chemicals and amphibian population declines. Diversity and Distributions, 9, 123–140.

    Article  Google Scholar 

  • Blumthaler, M., Ambach, W., and Ellinger, R. (1997) Increase in solar UV radiation with altitude. J. Photochemistry and Photobiology B, Biology, 39, 130–134.

    Google Scholar 

  • Brass, L. J. (1941) The 1938–39 Expedition to the Snow Mountains, Netherlands New Guinea. J. Arnold Arbor. 22, 271–342.

    Google Scholar 

  • Brass, L. J. (1964) Results of the Archbold Expeditions No. 86: Summary of the Sixth Archbold Expedition to New Guinea. Bulletin of the American Museum of Natural History, 127, 145–215.

    Google Scholar 

  • Brookfield, H. C. (1964) The ecology of highland settlement: Some suggestions. American Anthropologist, 66, 20–38.

    Article  Google Scholar 

  • Bruijnzeel, L. A. and Proctor, J. (1993) Hydrology and biogeochemistry of tropical montane cloud forests: What do we really know? In: L. S. Hamilton, J. O. Juvik, and F. N. Scatena (Eds.), Tropical Montane Cloud Forests, p. 264. East–West Center, HI.

    Google Scholar 

  • Bruijnzeel, L. A., Waterloo, M. J., Proctor, J. et al. (1993) Hydrological observations in montane forests on Gunung Silam, Sabah, Malaysia, with special reference to the “Massenerhebung” effect. J. Ecology, 81, 145–167.

    Article  Google Scholar 

  • Bush, M. B. (1994) Amazonian speciation: A necessarily complex model. J. Biogeography, 21, 5–17.

    Article  Google Scholar 

  • Bush, M. B., Piperno, D. R., Colinvaux, C. A., De Oliveira, P. E., Krissek, L. A., Miller, M. C., and Rowe, W. L. (1992) A 14,300-year palaeoecological profile of a lowland tropical lake in Panama. Ecological Monographs, 62, 251–275.

    Article  Google Scholar 

  • Caldwell, M. M. (1971) Solar UV irradiation and the growth and development of higher plants. In: A. C. Giese (Ed.) Photophysiology, pp. 131–177. Academic Press, New York.

    Google Scholar 

  • Caldwell, M.M. (1981) Plant response to solar ultraviolet radiation. In: O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler (Eds.), Physiological Plant Ecology, I: Encyclopedia of Plant Physiology (New Series, Vol. 12A, pp. 169–197). Springer-Verlag, Berlin.

    Google Scholar 

  • Caldwell, M. M., Robberecht, R., and Billings, W. D. (1980) A steep latitudinal gradient of solar ultraviolet-B radiation in the Arctic-alpine life zone. Ecology, 61, 600–611.

    Article  Google Scholar 

  • Caldwell, M., Teramura, A. H., Tevini, M., Bornman, J. F., Bjorn, L. O., and Kulandaivelu, G. (1995) Effects of increased ultraviolet-radiation on terrestrial plants. Ambio, 24, 166–173.

    Google Scholar 

  • Caldwell, M. M., Bjorn, L. O., Bornman, J. F., Flint, S. D., Kulandaivelu, G., Teramura, A. H., and Tevini, M. (1998) Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J. Photochemistry and Photobiology B—Biology, 46, 40–52.

    Google Scholar 

  • Carey, C. and Alexander, M. A. (2003) Climatic change and amphibian declines: Is there a link? Diversity and Distributions, 9, 111–121.

    Article  Google Scholar 

  • Carvalho, S. M. P., Heuvelink, E., Cascais, R., and van Korten, O. (2002) Effect of day and night temperature on internode and stem length in Chrysanthemum: Is everything explained by DIF? Annals of Botany, 90, 111–118.

    Article  CAS  Google Scholar 

  • Collins, J. P. and Storfer, A. (2003) Global amphibian declines: Sorting the hypotheses. Diversity and Distributions, 9, 89–98.

    Article  Google Scholar 

  • Corlett, R. T. (1984) Human impact on the subalpine vegetation of Mt. Wilhelm, Papua New Guinea. J. Ecology, 72, 841–854.

    Google Scholar 

  • Daszak, P., Cunningham, A. A., and Hyatt, A. D. (2003) Infectious disease and amphibian population declines. Diversity and Distributions, 9, 141–150.

    Article  Google Scholar 

  • Dave, J. V. and Halpern, P. (1976) Effect of changes in ozone amount on the ultraviolet radiation received at sea level of a model atmosphere. Atmospheric Environment, 10, 547–555.

    Article  CAS  Google Scholar 

  • Du Puy, D. and Cribb, P. (1988) The Genus Cymbidium. Helm, Bromley, U.K. Eldredge, N. and Gould, S. J. (1972) Punctuated equilibria: An alternative to phyletic gradualism. In: T. M. Schopf (Ed.) Models in Paleobiology. Freeman, Cooper & Co., San

    Google Scholar 

  • Francisco.

    Google Scholar 

  • Farrera, I., Harrison, S. P., Prentice, I. C., Bartlein, P. J., Bonnefille, R., Bush, M., Cramer, W., von Grafenstein, U., Holmgren, K., Hooghiemstra, H. et al. (1999) Tropical climates of the Last Glacial Maximum: A new synthesis of terrestrial palaeoclimate data. 1. Vegetation, lake levels and geochemistry. Climate Dynamics, 15, 823–856.

    Google Scholar 

  • Flenley, J. R. (1979) The Equatorial Rain Forest: A Geological History. Butterworths, London.

    Google Scholar 

  • Flenley, J. R. (1993) The origins of diversity in tropical rain forests. Trends in Ecology and Evolution, 8, 119–120.

    Article  CAS  Google Scholar 

  • Flenley, J. R. (2005) Palynological richness and the tropical rain forest. In: E. Bermingham, E. C. Dick, and C. Moritz (Eds.), Tropical Rainforests: Past, Present, and Future. Chicago University Press, Chicago.

    Google Scholar 

  • Flenley, J. R. (2007) Ultraviolet insolation and the tropical rain forest. In: M. B. Bush and J. R. Flenley (Eds.), Tropical Rain Forest Responses to Climatic Change (First Edition, pp. 219–235). Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Flenley, J. R. (2008) Why is pollen yellow? And what explains the high biodiversity of the tropical rain forest? Terra Nostra, 2, 82.

    Google Scholar 

  • Flenley, J. R. (2011) Why is pollen yellow? And why are there so many species in the tropical rain forest? J. Biogeography, 38, 809–816.

    Article  Google Scholar 

  • Flenley, J. R. and Richards, K. (Eds.) (1982) The Krakatoa Centenary Expedition: Final Report (Miscellaneous Series No. 25). Geography Department, University of Hull, U.K.

    Google Scholar 

  • Forster, R. M. (1982) A study of the spatial distribution of bryophytes on Rakata. In: J. R. Flenley and K. Richards (Eds.), The Krakatoa Centenary Expedition, Final Report (Miscellaneous Series No. 25, pp. 103–126). Geography Department, University of Hull, U.K.

    Google Scholar 

  • Gentry, A. H. (1989) Speciation in tropical forests. In: L. B. Holm-Nielsen, I. C. Nielsen, and H. Balslev (Eds), Tropical Forests: Botanical Dynamics, Speciation and Diversity, pp. 113– 134. Academic Press, London.

    Google Scholar 

  • Gleason, D. F. (2001) Ultraviolet radiation and coral communities. In: C. S. Cockell and A. R. Blaustein (Eds.), Ecosystems, Evolution and Ultraviolet Radiation, pp. 118–149. Springer-Verlag, New York.

    Google Scholar 

  • Gleason, J. F., Bhartia P. K., Herman J. R., McPeters, R., Newman, P., Stolarski, S., Flynn, I., Labow, G., Larko, D., Seftor, C. et al. (1993) Record low global ozone in 1992. Science, 260, 523–526.

    Article  CAS  Google Scholar 

  • Gould, K. S. and Lister, C. (2006). Flavonoid functions in plants. In: O. M. Andersen and K. R. Markham (Eds.), Flavonoids, Chemistry, Biochemistry and Applications, pp. 397–441. Taylor & Francis, Boca Raton, FL.

    Google Scholar 

  • Grubb, P. J. (1977) Control of forest growth and distribution on wet tropical mountains. Ann. Rev. Ecol. Syst., 8, 83–107.

    Article  CAS  Google Scholar 

  • Grubb, P. J. and Whitmore, T. C. (1966) A comparison of montane and lowland rain forest in Ecuador, 2: The climate and its effects on the distribution and physiognomy of the forests. J. Ecology, 54, 303–333.

    Article  Google Scholar 

  • Haffer, J. (1997) Alternative models of vertebrate speciation in Amazonia: An overview. Biodiversity and Conservation, 6, 451–476.

    Article  Google Scholar 

  • Haffer, J. T. and Prance, G. T. (2001) Climatic forcing of evolution in Amazonia during the Cenozoic: On the refuge theory of biotic differentiation. Amazoniana—Limnologia et Oecologia Regionalis Systemae Fluminis Amazonias, 16, 579–605.

    Google Scholar 

  • Hastenrath, S. (1968) Certain aspects of the three-dimensional distribution of climate and vegetation belts in the mountains of central America and southern Mexico. Colloquium Geogr., 9, 122–130.

    Google Scholar 

  • Hope, G. S. (1986) Development of present day biotic distributions in the New Guinea mountains. In: B. A. Barlow (Ed.), Flora and Fauna of Alpine Australasia: Ages and Origins, pp. 129–145. CSIRO, Melbourne, Australia.

    Google Scholar 

  • Jansen, M. A. K., Gaba, V., and Greenberg, B. M. (1998) Higher plants and UV-B radiation: Balancing damage, repair and acclimation. Trends in Plant Science, 3, 131–135.

    Article  Google Scholar 

  • Kats, L. B. and Ferrer R. P. (2003) Alien predators and amphibian declines: Review of two decades of science and the transition to conservation. Diversity and Distributions, 9, 99–110.

    Article  Google Scholar 

  • Landsberg, H. E., Lippmans, H., Paffen, K. H., and Troll, C. (1966) World Maps of Climatology, Third Edition. Springer-Verlag, Berlin.

    Google Scholar 

  • Leach, D. G. (1962) Rhododendrons of the World. Allen & Unwin, London.

    Google Scholar 

  • Leavitt, P. R., Vinebrooke, R. D., Donald, D. B., Smol, J. P., and Schindler, D. W. (1997) Past ultraviolet radiation environments in lakes derived from fossil pigments. Nature, 388, 457–459.

    Article  CAS  Google Scholar 

  • Lee, D. W. and Lowry, J. B. (1980a) Solar ultraviolet on tropical mountains: Can it affect plant speciation? The American Naturalist, 115, 880–883.

    Article  Google Scholar 

  • Lee, D. W. and Lowry J. B. (1980b) Young leaf anthocyanin and solar ultraviolet. Biotropica, 12, 75–76.

    Article  Google Scholar 

  • Lindoo, S. J. and Caldwell, M. M. (1978) Ultraviolet-B radiation-induced inhibition of leaf expansion and promotion of anthocyanin production. Plant Physiology, 61, 278–282.

    Article  CAS  Google Scholar 

  • Liu, J. Q., Gao, T. G., Chen, Z. D., and Lu, A. M. (2002) Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae). Molecular Phylogenetics and Evolution, 23, 307–325.

    Article  CAS  Google Scholar 

  • Liu, J. Q., Wang, Y. J., Wang, A. L., Hideaki, O., and Abbott, R. J. (2006) Radiation and diversification within the Ligularia-Cremanthodium-Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Molecular Phylogenetics and Evolution, 38, 31–49.

    Article  CAS  Google Scholar 

  • Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., and Darnell, J. (2000) Molecular Cell Biology. Freeman, New York.

    Google Scholar 

  • Madronich, S., McKenzie, R. L., Caldwell, M. M., and Bjorn, L. O. (1995) Changes in ultraviolet light reaching the Earth’s surface. Ambio, 24, 143–152.

    Google Scholar 

  • Martin, P. S. (1963) The last 10,000 Years: A Fossil Pollen Record of the American Southwest. University of Arizona Press, Tucson, AZ.

    Google Scholar 

  • Monteith, J. L. (1973) Principles of Environmental Physics. Arnold, London. Morley, R. J. (2000) Origin and Evolution of Tropical Rain Forests. John Wiley & Sons, Chichester, U.K.

    Google Scholar 

  • Murali, N. S. and Teramura, A. H. (1986a) Intraspecific differences in Cucumis sativus sensitivity to ultraviolet-B radiation. Physiol. Plant, 68, 673–677.

    Article  CAS  Google Scholar 

  • Murali, N. S. and Teramura, A. H. (1986b) Effectiveness of UV-B radiation on the growth and physiology of field grown soybean modified by water stress. Photochemistry and Photobiology, 44, 215–219.

    Article  Google Scholar 

  • Murali, N. S. and Teramura, A. H. (1986c) Effects of supplemental ultraviolet-B radiation on the growth and physiology of field-grown soybean. Environmental and Experimental Botany, 26, 233–242.

    Article  Google Scholar 

  • Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A. (2001) Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413, 481–487.

    Article  CAS  Google Scholar 

  • Pietras, J. T., Carroll, A. R., Singer, B. S., and Smith, M. E. (2003) 10 Kyr depositional cyclicity in the Early Eocene: Stratigraphic and Ar-40/Ar-39 evidence from the lacustrine Green River formation. Geology, 31, 593–596.

    Article  CAS  Google Scholar 

  • Salomans, J. B. (1986) Paleoecology of volcanic soils in the Colombian Central Cordillera (Parque Nacional de los Nevados). Dissertationes Botanicae, 95, 1–212.

    Google Scholar 

  • Schroeter, C. (1908) Das Pflanzenleben der Alpen: Eine Schilderung der Hochgebirgsflora. Verlag von Albert Raustein, Zurich, Switzerland.

    Google Scholar 

  • Shindell, D. T., Rind, D., and Lonergan, P. (1998a) Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature, 392, 589–592.

    Article  CAS  Google Scholar 

  • Shindell, D. T., Rind, D., and Lonergan, P. (1998b) Climate change and the middle atmosphere, Part IV: Ozone response to doubled CO2. J. Climate, 11, 895–918.

    Article  Google Scholar 

  • Sleumer, H. (1966) An Account of Rhododendron in Malesia. Noordhoff, Groningen, The Netherlands.

    Google Scholar 

  • Smith, P. M. and Warr, K. (Eds.) (1991) Global Environmental Issues. Hodder & Stoughton, with the Open University, London (295 pp.).

    Google Scholar 

  • Son, K. C., Kim, H., and Park, Y. S. (2002) Effects of DIF and temperature drop on the growth and flowering of egonia_hiemalis. J. Korean Society for Horticultural Science, 43, 492–496.

    Google Scholar 

  • Stolarski, R., Bojkov, R., Bishop, L., Zerefos, C., Staehelin, J., and Zawodry, J. (1992) Measured trends in atmospheric ozone. Science, 256, 342–349.

    Article  CAS  Google Scholar 

  • Storfer, A. (2003) Amphibian declines: Future directions. Diversity and Distributions, 9, 151–163.

    Article  Google Scholar 

  • Stuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S. L., Fischman, D. L., and Waller, R. W. (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783–1786.

    Article  CAS  Google Scholar 

  • Sullivan, J. H., Teramura, A. H., and Ziska, L. H. (1992) Variation in UV-B sensitivity in plants from a 3,000-m elevational gradient in Hawaii. Amer. J. Botany, 79, 737–743.

    Google Scholar 

  • Teramura, H. (1983) Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol. Plant, 58, 415–427.

    Article  CAS  Google Scholar 

  • Troll, C. (1959) Die tropischen Gebirge: Ihre dreidimensionale klimatische und pflanzengeogra ¨phische Zonierung. Dummlers, Bonn, Germany (93 pp.) [in German].

    Google Scholar 

  • van der Hammen, T. (1974) The Pleistocene changes of vegetation and climate in tropical South America. J. Biogeography, 1, 3–26.

    Article  Google Scholar 

  • van der Staaij, J. W. M., Bolink, E., Rozema, J., and Ernst, W. H. O. (1997) The impact of elevated UV-B (280–320 nm) radiation on the reproduction biology of a highland and a lowland population of Silene vulgaris. Plant Ecology, 128, 172–179.

    Google Scholar 

  • van Steenis, C. G. G. J. (1934–1936) On the origin of the Malaysian mountain flora. Bulletin du Jardin Botanique Buitenzorg Series III, Part I, 13: 135–262; Part II, 13: 289–417, Part III, 14, 56–72.

    Google Scholar 

  • van Steenis, C. G. G. J. (1972) The Mountain Flora of Java. E. J. Brill, Leiden, The Netherlands. Visscher, H., Looy, C. V., Collinson, M. E., Brinkhuis, H., Cittert, J. H. A. V. K. V., Kurschner

    Google Scholar 

  • W. M., and Sephton, M. A. (2004) Environmental mutagenesis during the end-Permian ecological crisis. Proceedings of the National Academy of Sciences U.S.A, 101, 12952–12956.

    Google Scholar 

  • Walker, D. and Flenley, J. R. (1979) Late Quaternary vegetational history of the Enga District of upland Papua New Guinea. Philosophical Trans. Royal Society London B, 286, 265–344.

    Article  Google Scholar 

  • Wang, Y. J., Pan, J. T., Liu, S. V., and Liu, J. Q. (2005) A new species of Saussurea (Asteraceae) from Tibet and its systematic position based on ITS sequence analysis. Botanical J. Linnean Society, 147, 349–356.

    Article  Google Scholar 

  • Wilf, P., Cuneo, N. R., Johnson, K. R., Hicks, J. F., Wing, S. L., and Obradovich, J. D. (2003) High plant diversity in Eocene South America: Evidence from Patagonia. Science, 300, 122–125.

    Article  CAS  Google Scholar 

  • Willis, K. J. and Niklas, K. J. (2004) The role of Quaternary environmental change in plant macroevolution: The exception or the rule? Philosophical Trans. Royal Society London B, 359, 159–172.

    Article  Google Scholar 

  • Willis, K. J., Bennett, K. D., and Birks, H. J. B. (2009) Variability in thermal and UV-B energy fluxes through time and their influence on plant diversity and speciation. J. Biogeography, 36, 1630–1644.

    Article  Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. (2001) Trends, rhythms and aberrations in global climate 65Ma to present. Science, 292, 686–693.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Flenley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Flenley, J.R. (2011). Ultraviolet insolation and the tropical rainforest: Altitudinal variations, Quaternary and recent change, extinctions, and the evolution of biodiversity. In: Bush, M., Flenley, J., Gosling, W. (eds) Tropical Rainforest Responses to Climatic Change. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05383-2_8

Download citation

Publish with us

Policies and ethics