Skip to main content

Simple Critical Ultrasound Considering Hemodynamic Therapy: Our Limited Investigation

  • Chapter
  • First Online:
Whole Body Ultrasonography in the Critically Ill

Abstract

The bedside work of the intensivist is to provide adequate oxygen output to tissues in acute circulatory failure. The present chapter was the main reason for launching this new edition. We have taken care to make it as moderate and open as possible to any criticism. We just invite different thinking by introducing some thought processes in a field where no perfect “gold standards” are available. For this, we will propose the consideration of a parameter that can be as debatable as all the other tools, but whose particularity is to assess directly the question of fluid therapy. Evolution of concepts considering hemodynamic therapy in the critically iii Before intensive care units were created (in the 1950s–60s), patients with circulatory failure died. The physicians in charge of these new units did their best, helped only by the central venous pressure (CVP), until the Swan-Ganz catheter was developed in the early 1970s [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451

    Article  PubMed  CAS  Google Scholar 

  2. Krausz MM, Perel A, Eimerl D, Cotev S (1977) Cardiopulmonary effects of volume loading in patients in septic shock. Ann Surg 185:429–434

    Article  PubMed  CAS  Google Scholar 

  3. Packman RI, Rackow EC (1983) Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock. Crit Care Med 11:165–169

    Article  PubMed  CAS  Google Scholar 

  4. Zion MM, Balkin MM, Rosenmann D, Goldbourt U, Reicher-Reiss H, Kaplinsky E, Behar S (1990) Use of the pulmonary artery catheter in patients with acute myocardial infarction. Chest 98:1331–1335

    Article  PubMed  CAS  Google Scholar 

  5. Mimoz O, Rauss A, Rekik N, Brun-Buisson C, Lemaire F, Brochard L (1994) Pulmonary artery catheterization in critically ill patients: a prospective analysis of outcome changes associated with catheter prompted changes in therapy. Crit Care Med 22:573–579

    Article  PubMed  CAS  Google Scholar 

  6. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. J Am Med Assoc 276:889–897

    Article  Google Scholar 

  7. Wagner JG, Leatherman JW (1998) Right ventricular end diastolic volume as a predictor of the hemodynamic response to a fluid challenge. Chest 113:1048–1054

    Article  PubMed  CAS  Google Scholar 

  8. Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, McManus E (1999) Reducing the risk of major elective surgery: randomized controlled trial of preoperative optimisation of oxygen delivery. Br Med J 318:1099–1103

    Article  CAS  Google Scholar 

  9. Boldt J (2000) Volume therapy in the intensive care patient – we are still confused, but …. Intensive Care Med 26:1181–1192

    Article  PubMed  CAS  Google Scholar 

  10. Rhodes A, Cusack RJ, Newman PJ, Grounds RM, Bennett ED (2002) A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med 28:256–264

    Article  PubMed  Google Scholar 

  11. Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, Boulain T, Lefort Y, Fartoukh M, Baud F, Boyer A, Brochard L, Teboul JL (2003) French Pulmonary Artery Catheter Study Group – early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. J Am Med Assoc 290:2713–2720

    Article  CAS  Google Scholar 

  12. Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, Laporta DP, Viner S, Passerini L, Devitt H, Kirby A, Jacka M (2003) A randomized, controlled trial of the use of pulmonary artery catheters in high-risk surgical patients. New Engl J Med 348:5–14

    Article  PubMed  Google Scholar 

  13. Monnet X, Richard C, Teboul JL (2004) The pulmonary artery catheter in critically ill patients. Does it change outcome? Minerva Anestesiol 70:219–224

    PubMed  CAS  Google Scholar 

  14. Shah MR, Hasselblad V, Stevenson LW, Binanay C, O’Connor CM, Sopko G, Califf RM (2005) Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. J Am Med Assoc 294:1664–1670

    Article  CAS  Google Scholar 

  15. Sakr Y, Vincent JL, Reinhart K, Payen D, Wiedermann CJ, Zandstra DF, Sprung CL (2005) Use of the pulmonary artery catheter is not associated with worse outcome in the ICU. Chest 128:2722–2731

    Article  PubMed  Google Scholar 

  16. Simini B (2005) Pulmonary artery catheters in intensive care. Lancet 366:435–437

    Article  PubMed  Google Scholar 

  17. Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K (2005) PAC-Man study collaboration. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 366(9484):472–477

    Article  PubMed  Google Scholar 

  18. Osman D, Ridel C, Rey P, Monnet X, Anguel N, Richard C, Teboul JL (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 35:64–68

    Article  PubMed  Google Scholar 

  19. Gnaegi A, Feihl F, Perret C (1997) Intensive care physicians insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med 25:213–220

    Article  PubMed  CAS  Google Scholar 

  20. Squara P, Bennett D, Perret C (2002) Pulmonary artery catheter: does the problem lie in the users? Chest 121:2009–2015

    Article  PubMed  Google Scholar 

  21. Pinsky MR, Vincent JL (2005) Let us use the pulmonary artery catheter correctly and only when we need it. Crit Care Med 33:1119–1122

    Google Scholar 

  22. Jardin F, Valtier B, Beauchet DO, Bourdarias JP (1994) Invasive monitoring combined with two-dimensional echocardiographic study in septic shock. Intensive Care Med 20:550–554

    Article  PubMed  CAS  Google Scholar 

  23. Benjamin E, Oropello JM, Stein JS (1996) Transesophageal echocardiography in the management of the critically ill patient. Curr Surg 53:137–141

    Google Scholar 

  24. Tudor C, Denault A, Guimond JG, Couture P et al (2002) The hemodynamically unstable patient in the ICU: hemodynamic vs. transesophageal echocardiographic monitoring. Crit Care Med 30:1214–1223

    Article  Google Scholar 

  25. Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G (2002) Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest 121:1245–1252

    Article  PubMed  Google Scholar 

  26. Axler O, Megarbane B, Lentschener C, Fernandez H (2003) Comparison of cardiac output measured with echocardiographic volumes and aortic Doppler methods during mechanical ventilation. Intensive Care Med 29:208–217

    PubMed  CAS  Google Scholar 

  27. Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, Jardin F (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–1739

    PubMed  Google Scholar 

  28. Slama M, Masson H, Teboul JL et al (2004) Monitoring of respiratory variations of aortic blood flow velocity using esophageal Doppler. Intensive Care Med 30:1182–1187

    Article  PubMed  Google Scholar 

  29. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL (2005) Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med 31:1195–1201

    Article  PubMed  Google Scholar 

  30. Poelaert JI, Schupfer G (2005) Hemodynamic monitoring utilizing transesophageal echocardiography: the relationships among pressure, flow, and function. Chest 127: 379–390

    Article  PubMed  Google Scholar 

  31. Via G, Braschi A (2006) Echocardiographic assessment of cardiovascular failure. Minerva Anesthesiol 72:495–501

    CAS  Google Scholar 

  32. Price S, Nicol E, Gibson DG, Evans TW (2006) Echocardiography in the critically ill: current and potential roles. Intensive Care Med 32:48–59

    Article  PubMed  CAS  Google Scholar 

  33. Stoddard MF, Liddell NE, Vogel RL, Longaker RA, Dawkins PR (1992) Comparison of cardiac dimensions by transesophageal and transthoracic echocardiography. Am Heart J 124(3): 675–678

    Article  PubMed  CAS  Google Scholar 

  34. Perel A (1998) Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1309–1310

    Article  PubMed  CAS  Google Scholar 

  35. Shoemaker WC (1996) Oxygen transport and oxygen metabolism in shock and critical illness. Invasive and noninvasive monitoring of circulatory dysfunction and shock. Crit Care Clin 12:939–969

    Article  PubMed  CAS  Google Scholar 

  36. Taylor DE, Simonson SG (1996) Use of near-infrared spectroscopy to monitor tissue oxygenation. New Horiz 4:420–425

    PubMed  CAS  Google Scholar 

  37. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–1321

    Article  PubMed  CAS  Google Scholar 

  38. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MF, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162: 134–138

    Article  PubMed  CAS  Google Scholar 

  39. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008

    Article  PubMed  Google Scholar 

  40. Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P, Goetz AE (2002) Stroke volume variation for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398

    Article  PubMed  Google Scholar 

  41. Pinsky MR (2004) Using ventilation-induced aortic pressure and flow variation to diagnose preload responsiveness. Intensive Care Med 30:1008–1010

    Article  PubMed  Google Scholar 

  42. Perel A, Minkovich L, Preisman S, Abiad M, Segal E, Coriat P (2005) Assessing fluid responsiveness by a standardized ventilatory maneuver: the respiratory systolic variation test. Anesth Analg 100:942–945

    Article  PubMed  Google Scholar 

  43. Combes A, Arnoult F, Trouillet JL (2004) Tissue Doppler imaging estimation of pulmonary artery occlusion pressure in ICU patients Intensive Care Med 30:75–81

    Google Scholar 

  44. Pavlinic I, Tvrtkovic N, Holcer D (2008) Morphological identification of the soprano pipistrelle in Croatia. Hystrix It J Mamm 19:47–53

    Google Scholar 

  45. Magder S (2005) How to use central venous pressure measurements. Curr Opin Crit Care 11:264–270

    Article  PubMed  Google Scholar 

  46. Schumaker PT, Cain SM (1987) The concept of a critical oxygen delivery. Intensive Care Med 13:223–229

    Article  Google Scholar 

  47. Hayes MA, Timmins AC, Yau EH et al (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330(24):1717–1722

    Article  PubMed  CAS  Google Scholar 

  48. Magder S (1998) More respect for the CVP. Intensive Care Med 24:651–653

    Article  PubMed  CAS  Google Scholar 

  49. Walley KR (2005) Shock. In: Hall JB, Schmidt GA, Wood DH (eds) Principles of critical care, 3rd edn. McGraw-Hill, New York, pp 249–265

    Google Scholar 

  50. Teboul JL (1991) Pression capillaire pulmonaire. In: Dhainaut JF, Payen D (eds) Hémodynamique, concepts et pratique en réanimation. Masson, Paris, pp 107–121

    Google Scholar 

  51. Jardin F (1997) PEEP, tricuspid regurgitation and cardiac output. Intensive Care Med 23:806–807

    Article  PubMed  CAS  Google Scholar 

  52. Antonelli M, Levy M, Andrews P, Chastre J, Hudson LD, Manthous C, Meduri GU, Moreno RP, Putensen C, Stewart T, Torres A (2007) Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, 27-28 April 2006. Intensive Care Med 33:575–590

    Article  PubMed  Google Scholar 

  53. De Backer D, Creteur J, Preiser JC et al (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  PubMed  Google Scholar 

  54. Sakr Y, Dubois MJ, De Backer D et al (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831

    Article  PubMed  Google Scholar 

  55. Fietsam RJ, Villalba M, Glover JL, Clark K (1989) Intra-abdominal compartment syndrome as a complication of ruptured abdominal aortic aneurysm repair. Am Surg 55:396–402

    PubMed  Google Scholar 

  56. Malbrain ML, CheathamAKirkpatrick KA et al (2006) Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. Intensive Care Med 32:1722–1732

    Article  PubMed  Google Scholar 

  57. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  58. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM et al (2008) Surviving Sepsis Campaign. International guidelines for management of severe sepsis and septic shock. Intensive Care Med 341:17–60

    Article  Google Scholar 

  59. Abid O, Akca S, Haji-Michael P, Vincent JL (2000) Strong vasopressor support may be futile in the intensive care unit patient with multiple organ failure. Crit Care Med 28:947–949

    Article  PubMed  CAS  Google Scholar 

  60. Hollenberg SM, Ahrens TS, Annane D, Astiz ME, Chalfin DB, Dasta JF, Heard SO, Martin C, Napolitano LM, Susla GM, Totaro R, Vincent JL, Zanotti-Cavazzoni S (2004) Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update. Crit Care Med 32: 1928–1948

    Article  PubMed  Google Scholar 

  61. Vieillard-Baron A, Slama M, Cholley B, Janvier G, Vignon P (2008) Echocardiography in the intensive care unit: from evolution to revolution? Intensive Care Med 34:243–249

    Article  PubMed  Google Scholar 

  62. Pinsky MR (2003) Hemodynamic monitoring in the intensive care unit. Clin Chest Med 24:549–560

    Article  PubMed  Google Scholar 

  63. Braunwald E (1984) Heart disease. W.B. Saunders, Philadelphia, p 173

    Google Scholar 

  64. Vincent JL, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34:1333–1337

    Article  PubMed  Google Scholar 

  65. Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289

    Article  PubMed  CAS  Google Scholar 

  66. Rex S, Brose S, Metzelder S, Huneke R, Schalte G, Autschbach R, Rossaint R, Buhre W (2004) Prediction of fluid responsiveness in patients during cardiac surgery. Br J Anaesth 93:782–788

    Article  PubMed  CAS  Google Scholar 

  67. Pinsky MR, Payen D (2005) Functional hemodynamic monitoring. Crit Care 9:566–572

    Article  PubMed  Google Scholar 

  68. Vieillard-Baron A, Slama M (2008) Prise en charge hémodynamique du sepsis sévère et du choc septique à l’aide de l’échocardiographie. In: Vignon P, Cholley B, Slama M, Vieillard-Baron A (eds) Echocardiographie Doppler chez le patient en état critique. Elsevier, Paris, pp 97–114

    Google Scholar 

  69. Lichtenstein D, Mezière G, Biderman P, Gepner A, Barré O (1997) The comet-tail artifact: an ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med 156:1640–1646

    Article  PubMed  CAS  Google Scholar 

  70. Lichtenstein D, Mezière G (1998) A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact. Intensive Care Med 24:1331–1334

    Article  PubMed  CAS  Google Scholar 

  71. Cholley BP, Payen D (2003) Pulmonary artery catheters in high-risk surgical patients. N Engl J Med 348:2035–2037

    PubMed  Google Scholar 

  72. Braunwald E, Rahimtoola SH, Loeb HS (1961) Left atrial and left ventricular pressure in subjects without cardiovascular disease. Circulation 24:267–274

    Article  PubMed  CAS  Google Scholar 

  73. Flores ED, Lange RA, Hillis LD (1990) Relation of mean pulmonary arterial wedge pressure and left ventricular end-diastolic pressure. Am J Cardiol 66:1532–1533

    Article  PubMed  CAS  Google Scholar 

  74. Pinsky MR (2003) Clinical significance of pulmonary artery occlusion pressure. Intensive Care Med 29:175–178

    PubMed  Google Scholar 

  75. Boldt J, Lenz M, Kumle B, Papsdorf M (1998) Volume replacement strategies on intensive care units: results from a postal survey. Intensive Care Med 24:147–151

    Article  PubMed  CAS  Google Scholar 

  76. Lichtenstein D, Mezière G (2008) Relevance of lung ultrasound in the diagnosis of acute respiratory failure – The BLUE-protocol. Chest 134:117–125

    Article  PubMed  Google Scholar 

  77. Lichtenstein D, Mezière G, Lagoueyte JF, Biderman P, Goldstein I, Gepner A (2009) A-lines and B-lines: lung ultrasound as a bedside tool for predicting pulmonary artery occlusion pressure in the critically ill. Chest 136: 1014–1020

    Article  PubMed  Google Scholar 

  78. Lemaire F, Brochard L (2001) ARDS. In: Réanimation Médicale. Masson, Paris, pp 807–810

    Google Scholar 

  79. Walley KR, Wood LDH (1998) Ventricular dysfunction in critical illness. In: Hall JB, Schmidt GA, Wood LDH (eds) Principles of critical care, 2nd edn. McGraw-Hill, New York, pp 303–312

    Google Scholar 

  80. Staub NC (1974) Pulmonary edema. Physiol Rev 54:678–811

    Article  PubMed  CAS  Google Scholar 

  81. Chait A, Cohen HE, Meltzer LE, VanDurme JP (1972) The bedside chest radiograph in the evaluation of incipient heart failure. Radiology 105:563–566

    PubMed  CAS  Google Scholar 

  82. Rémy-Jardin M, Rémy J (1995) Œdème interstitiel. In: Imagerie nouvelle de la pathologie thoracique quotidienne. Springer, Paris, pp 137–143

    Google Scholar 

  83. Guyton CA, Hall JE (1996) Textbook of medical physiology, 9th edn. W.B. Saunders, Philadelphia, pp 496–497

    Google Scholar 

  84. Safran D, Journois D (1995) Circulation pulmonaire. In: Samii K (ed) Anesthésie Réanimation Chirurgicale, 2nd edn. Flammarion, Paris, pp 31–38

    Google Scholar 

  85. Lichtenstein D (2002) In : General ultrasound in the critically ill, 2nd edn. Springer, Paris Berlin New York, pp 123–136

    Google Scholar 

  86. Teboul JL et le groupe d’experts de la SRLF (2004) Recommandations d’experts de la SRLF. Indicateurs du remplissage vasculaire au cours de l’insuffisance circulatoire Réanimation 13:255–263

    Google Scholar 

  87. Thys DM (1984) Pulmonary artery catheterization: past, present and future. Mt Sinaï J Med 51:578–584

    PubMed  CAS  Google Scholar 

  88. Raper P, Sibbald WJ (1986) Misled by the wedge? The Swan-Ganz catheter and left ventricular preload. Chest 89:427–434

    Article  PubMed  CAS  Google Scholar 

  89. Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90:351–355

    PubMed  CAS  Google Scholar 

  90. Pinsky MR (2003) Pulmonary artery occlusion pressure. Intensive Care Med 29:19–22

    Article  PubMed  Google Scholar 

  91. Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, Neumann A, Ali A, Cheang M, Kavinsky C, Parrillo JE (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32:691–699

    Article  PubMed  Google Scholar 

  92. Lichtenstein D, Jardin F (1994) Noninvasive assessment of CVP using inferior vena cava ultrasound measurement of the inferior vena cava in the critically ill. Réanimation Urgences 3:79–82

    Article  Google Scholar 

  93. Mintz GS, Kotler MN, Parry WR, Iskandrian AS, Kane SA (1981) Real-time inferior vena caval ultrasonography: normal and abnormal findings and its use in assessing right-heart function. Circulation 64:1018–1025

    Article  PubMed  CAS  Google Scholar 

  94. Moreno F, Hagan G, Holmen J, Pryop A, Strickland R, Castle H (1984) Evaluation of size and dynamics of inferior vena cava as an index of right-sided cardiac function. Am J Cardiol 53:579–585

    Article  PubMed  CAS  Google Scholar 

  95. Nakao S, Come P, Mckay R, Ransil B (1987) Effects of positional changes on inferior vena caval size and dynamics and correlations with right-sided cardiac pressure. Am J Cardiol 59:125–132

    Article  PubMed  CAS  Google Scholar 

  96. Jue J, Chung W, Schiller N (1992) Does inferior vena cava size predict right atrial pressures in patients receiving mechanical ventilation? J Am Soc Echocardiogr 5:613–619

    PubMed  CAS  Google Scholar 

  97. Lichtenstein D, Jardin F (1996) Calibre de la veine cave inférieure et pression veineuse centrale (Lettre à la Rédaction). Réanimation Urgences 5(4):431–434

    Article  Google Scholar 

  98. Barbier C, Loubières Y, Schmitt JM, Hayon J, Ricôme JL, Jardin F, Vieillard-Baron A (2004) Respiratory changes in IVC diameter are helpful in predicting fluid responsiveness in ventilated, septic patients. Intensive Care Med 30:1740–1746

    PubMed  Google Scholar 

  99. Feissel M, Michard F, Faller JP, Teboul JL (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 32:1832–1838

    Google Scholar 

  100. Ferguson ND, Meade MO, Hallett DC, Stewart TE (2002) High values of the pulmonary artery wedge pressure in patients with acute lung injury and acute respiratory distress syndrome. Intensive Care Med 28:1073–1077

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Lichtenstein .

Appendices

Appendix 1

Comments currently heard in our corridors:a

“This patient has already received 3,000 cc. I consider this is enough fluid.”

“What is a good hemodynamic tool? It depends. Probably all of them. If you have a PICCO in your institution and not the other tools, you will use the PICCO. If you have two tools, you can choose, case per case. This given patient will be better assessed using a TEE.”

“ I don’t believe too much in PICCO. What are my arguments? No precise argument, I just don’t believe in it.”

“I succeeded in maintaining this patient only at the price of massive doses of epinephrine and norepinephrine; he was definitely extremely severe.”

“I lost this patient in spite of massive doses of epinephrine and norepinephrine; he was definitely too severe.”

“Before sending the patient to CT (for a diagnosis), I stabilized him.”b

“ I don’t care about the first value of this measurement (CVP, diameter, etc.). What I care about is the evolution under my therapy.”

aAll these comments have been heard, here or there (and even said by the young author). They are not inserted here in order to highlight the ignorance of certain intensivists, but rather to show, by the text, that the traditional tools are all indirect ones.

bSupposedly, blindly

Appendix 2

Methods and patients of the lung part of the limited investigation (Adapted from [77]):

A prospective 5-year study evaluated 102 critically ill ventilated and sedated patients (62 men, mean age 57, PEEP between 0 and 7 mmHg, mean tidal volume 7 ± 1 mL/kg, plateau pressure <32 cm H2O, septic shock (n = 24), ARDS (n = 28), acute hemodynamic pulmonary edema (n = 13), severe trauma (n = 9), complications following various surgeries (n = 8), hypovolemic or anaphyllactic shock (n = 6), severe pulmonary disorders (n = 5), severe abdominal disorders or severe cardiac disorders or various (n = 9), with no case of pericardial tamponade) receiving a PAC in medicosurgical ICUs. Hemodynamic measurements were done at the discretion of the managing team faced with instability or complex hemodynamic situations.

The ultrasound operators, blinded to the hemodynamic measurements, checked for pressure head at the correct location, catheter line flushed, zero level, radiography, appropriate pressure traces surrounding balloon inflation. Only the PAOP curve displaying characteristic and logic curves (respiratory variations of PAOP remaining under respiratory variations of pulmonary artery diastolic pressure) was considered. The patients remained connected to ventilators.

Appendix 3

Application of the Grotowski law to the limited investigation considering hemodynamic therapy:

A shocked patient has spontaneously little chance to survive. Admitted into a hospital of any quality and taken in charge by an intensivist of any quality, the chances or survival dramatically increase, from zero to maybe 60% in low-level institutions (called B-series), and to 75% in the best institutions of the world, using TEE, etc. (called A-series). These numbers are the author’s estimations. Accepting them, the differences between an A-series and a B-series ICU is roughly only 15 percentage points.

Let us suppose that a statistical study proves that, in a collective of shocked patients, systematic fluid therapy improves 51% or more of the patients – or the opposite, it will be concluded that these institutions would make more good than harm – or the opposite, in giving systematic fluid therapy. The 60% speculative rate is enhanced by one point.

Let us now introduce into these B-series institutions our simple gray-scale ultrasound unit. The simple analysis of the left heart contractility will give precious information on the need for inotropics, again enhancing the 60% rate by a few points.

Let us now introduce the FALLS protocol. Fluid given on the basis of A-predominance, and not given on the basis of B-predominance, would increase the rate of benefitial fluid administration – yielding additional points.

If we go on integrating simple data from our limited investigation, i.e., inferior and superior caval vein, etc., the B-series institution’s performance would be enhanced by these four, five, or more percentage points of bonus. A question is now opened: up to how many points will these B-series ICUs be hoisted? Didn’t they already reach the A-series ICUs? In this scenario, one speculates that, in those A-series ICUs, the definitive choice between either TEE, PICCO, PAC, or other tools will perhaps not be the critical point – as far as lung ultrasound is not used.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lichtenstein, D.A. (2010). Simple Critical Ultrasound Considering Hemodynamic Therapy: Our Limited Investigation. In: Whole Body Ultrasonography in the Critically Ill. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05328-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05328-3_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05327-6

  • Online ISBN: 978-3-642-05328-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics