Skip to main content

Optimal b-Flavour and b-Hadron Reconstruction

  • Chapter
  • First Online:
  • 461 Accesses

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 236))

Abstract

Without the luxury of a fully reconstructed b-hadron state, to make progress in b-physics, one is at the mercy of detector design and performance. As we have seen, precision tracking and a particle identification capability are prerequisites to be able to reconstruct the underlying physics event from the particles that make it through the detection-reconstruction chain. The experimenter must use the detector information available to make a selection of the particles that are most likely to be involved in the process of interest. This selection procedure could take the form of simply cutting away those particles whose parameter values fall outside of predetermined bounds. This cut-based approach has been traditionally the main technique of data analysis in high energy physics and its simplicity can produce measurements that are well ‘understood’ i.e. with a low systematic uncertainity. However, the performance of this method is best when applied to variables that (a) provide excellent discrimination and (b) are uncorrelated. This follows since cutting on a variable that shows only a weak discrimination will lead to a low selection efficiency and high background, whereas highly correlated variables bring no extra information to an analysis and so cannot improve the performance. Furthermore, rejecting particles from an analysis in this way assumes that they are all independent of each other which is often not the case e.g. measurements of track impact parameters, referenced to the reconstructed primary vertex position, are correlated between those tracks that formed part of the primary vertex fit. For these reasons, cut-based analyses tend to be restricted to the use of a few, high performance, variables that have small correlations between them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is a ‘S’-shaped turn-on function, \(\frac{1}{1+\exp^{-Ax}}\) where x is the sum of all input weights to the node and A is a tuned parameter controlling the sharpness of the turn-on.

  2. 2.

    b-hadron direction and energy resolutions typically consist of a Gaussian part describing most of the data plus some broader, often non-Gaussian, component accounting for the rest.

  3. 3.

    Note that \(\textrm{B}_\textrm{s}^{0}\) mesons oscillate many times during an average lifetime and so in this case, the decay flavour tag has no correlation with the production flavour and would be removed from the input definition i.e. \(I_{\textrm{B}_\textrm{s}} = F(\textrm{hem.})_{\textrm{B}_\textrm{s}}^{\textrm{frag.}} \cdot P_{\textrm{B}_\textrm{s}}\).

  4. 4.

    Since the flavour tags are symmetric distributions about zero, these plots are obtained by cutting in a symmetric band around zero to larger and larger tag values. The purity is then the fraction of all hemispheres passing the cut that are correctly tagged and the x-axis is the fraction of correct tags out of the total possible.

References

  1. C. Peterson: Pattern recognition in high energy physics with neural networks. In: Proceedings, Erice91, QCD at 200 TeV, Ettore Majorana Int. Sci. Ser., Physical sci., vol 60, L. Cifarelli, Y. Dokshitzer eds. Plenum, New York (1992) pp. 149–163

    Google Scholar 

  2. OPAL Collab., K. Ackerstaff et al.: Zeit. Phys. C 73, 397 (1997)

    Article  Google Scholar 

  3. OPAL Collab., G. Abbiendi et al.: Eur. Phys. J. C 8, 217 (1999)

    Article  ADS  Google Scholar 

  4. OPAL Collab., G. Abbiendi et al.: Phys. Lett. B 482, 15 (2000)

    Article  ADS  Google Scholar 

  5. ALEPH Collab., R. Barate et al.: Phys. Lett. B 492, 259 (2000)

    Article  ADS  Google Scholar 

  6. Z. Albrecht, T. Allmendinger, G. Barker, M. Feindt, C. Haag, M. Moch: BSAURUS-A Package For Inclusive B-Reconstruction in DELPHI., hep-ex/0102001 (2001)

    Google Scholar 

  7. K. Hagiwara et al.: Phys. Rev. D 66, 010001 (2002) and 2003 off-year partial update for the 2004 edition available on the PDG WWW pages (URL: http://pdg.lbl.gov/)

  8. ALEPH Collab., D. Buskulic et al.: Phys. Lett. B 278, 209 (1992)

    Article  Google Scholar 

  9. DELPHI Collab., P. Abreu et al.: Phys. Lett. B 289, 199 (1992)

    Article  ADS  Google Scholar 

  10. Z. Albrecht, G.J. Barker, M. Feindt, U. Kerzel, M. Moch: A Study of Excited b-hadron States with the DELPHI Detector at LEP, contribution to EPS 2003, Aachen, DELPHI 2003-029-CONF-649

    Google Scholar 

  11. ALEPH Collab., D. Buskulic et al.: Z. Phys. C 69, 393 (1996)

    Article  Google Scholar 

  12. OPAL Collab., R. Akers et al.: Z Phys. C 66, 19 (1995)

    Article  ADS  Google Scholar 

  13. OPAL Collab., G. Abbiendi et al.: Eur. Phys. J. C 23, 437 (2002)

    Article  ADS  Google Scholar 

  14. OPAL Collab., R. Akers et al.: Z. Phys. C 66, 19 (1995)

    Article  ADS  Google Scholar 

  15. DELPHI Collab., P. Abreu et al.: Phys. Lett. B 345, 598 (1995)

    Article  ADS  Google Scholar 

  16. ALEPH Collab., D. Buskulic et al.: Z. Phys. C 69, 393 (1996)

    Article  Google Scholar 

  17. L3 Collab., M. Acciarri et al.: Phys. Lett. B 465, 323 (1999)

    Article  ADS  Google Scholar 

  18. ALEPH Collab., R. Barate et al.: Phys. Lett. B 425, 215 (1998)

    Article  ADS  Google Scholar 

  19. G.J. Barker: B Production and Oscillations at DELPHI. In: Proceedings of the International Europhysics Conference on High Energy Physics, Aachen (2003)

    Google Scholar 

  20. M. Moch: In: Proceedings of the EPS International Europhysics Conference on High Energy Physics, Lisbon, 2005, Proc. Sci. HEP2005 232 (2006)

    Google Scholar 

  21. CDF Collab., T. Aaltonen et al.: Phys. Rev. Lett. 102, 102003 (2009)

    Article  ADS  Google Scholar 

  22. CDF Collab., T. Aaltonen et al.: Phys. Rev. Lett. 100, 082001 (2008)

    Article  ADS  Google Scholar 

  23. DELPHI Collab., J. Abdallah et al.: Eur. Phys. J. C 33, 307 (2004)

    Article  Google Scholar 

  24. K. Amsler et al.: Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  25. OPAL Collab., G. Abbiendi et al.: Eur. Phys. J. C 12, 609 (2000)

    ADS  Google Scholar 

  26. DELPHI Collab., P. Abreu et al.: Zeit Phys. C 71, 539 (1996)

    Article  ADS  Google Scholar 

  27. ALEPH Collab., A. Heister et al.: Phys. Lett. B 512, 30 (2001)

    Article  ADS  Google Scholar 

  28. OPAL Collab., G. Abbiendi et al.: Eur. Phys. J. C 29, 463 (2003)

    Article  Google Scholar 

  29. DELPHI Collab.: A Study of the b-quark fragmentation function with the DELPHI detector at LEP I and an averaged distribution at the Z0 pole, to be submitted to Eur. Phys. J

    Google Scholar 

  30. V. Blobel: The RUN manual: Regularized Unfolding for High-Energy Physics, OPAL Technical Note TN361 (1996)

    Google Scholar 

  31. V. Blobel: Unfolding Methods In High-Energy Physics Experiments, DESY 84-118 (1984)

    Google Scholar 

  32. V. Blobel: In Proceedings of the 1984 CERN School of Computing, CERN 85-02 (1985)

    Google Scholar 

  33. K. Abe et al.: Phys. Rev. D 65, 092006 (2002)

    Article  ADS  Google Scholar 

  34. B. Andersson, G. Gustafson, B. Soderberg: Z. Phys. C 20, 317 (1983)

    Article  ADS  Google Scholar 

  35. DELPHI Collab., J. Abdallah et al.: Eur. Phys. J. C 40, 1 (2005)

    Google Scholar 

  36. G.J. Barker, M. Feindt, U. Kerzel, L. Ramler: A Study of the b-Quark Fragmentation Function with the DELPHI Detector at LEP 1, contribution to ICHEP 2002, Amsterdam, DELPHI 2002-069-CONF-603

    Google Scholar 

  37. DELPHI Collab., J. Abdallah et al.: Phys. Lett. B 561, 26 (2003)

    Article  ADS  Google Scholar 

  38. DELPHI Collab., J. Abdallah et al.: Eur. Phys. J. C 28, 155 (2003)

    Article  ADS  Google Scholar 

  39. DELPHI Collab., P. Abreu et al.: Phys. Lett. B 426, 193 (1998)

    Article  ADS  Google Scholar 

  40. ALEPH Collab., R. Barate et al.: Eur. Phys. J. C 4, 387 (1998)

    Article  ADS  Google Scholar 

  41. ALEPH, CDF, DELPHI, L3, OPAL, SLD: Combined results on b-hadron production

    Google Scholar 

  42. CLEO Collab., B.C. Barish et al.: Phys. rev. Lett. 76, 1570 (1996)

    Article  ADS  Google Scholar 

  43. M. Neubert, C.T. Sachradja: Nucl. Phys. B 483, 339 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary John Barker .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barker, G.J. (2010). Optimal b-Flavour and b-Hadron Reconstruction. In: b-Quark Physics with the LEP Collider. Springer Tracts in Modern Physics, vol 236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05279-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05279-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05278-1

  • Online ISBN: 978-3-642-05279-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics