Skip to main content

Probabilistic Graphical Markov Model Learning: An Adaptive Strategy

  • Conference paper
MICAI 2009: Advances in Artificial Intelligence (MICAI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5845))

Included in the following conference series:

Abstract

In this paper an adaptive strategy to learn graphical Markov models is proposed to construct two algorithms. A statistical model complexity index (SMCI) is defined and used to classify models in complexity classes, sparse, medium and dense. The first step of both algorithms is to fit a tree using the Chow and Liu algorithm. The second step begins calculating SMCI and using it to evaluate an index (EMUBI) to predict the edges to add to the model. The first algorithm adds the predicted edges and stop, and the second, decides to add an edge when the fitting improves. The two algorithms are compared by an experimental design using models of different complexity classes. The samples to test the models are generated by a random sampler (MSRS). For the sparse class both algorithms obtain always the correct model. For the other two classes, efficiency of the algorithms is sensible to complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adami, C.N., Cerf, J.: Physical Complexity of Symbolic Sequences. Physica DĀ 137, 62ā€“69 (2000)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  2. Akaike, H.: A New Look at the Statistical Model Identification. IEEE Transactions on Automatic ControlĀ 19, 716ā€“723 (1974)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  3. Chickering, M.C., Heckerman, D., Meck, C.: Large-Sample Learning of Bayesian Network is NP-Hard. Journal of Machine Learning ResearchĀ 5, 1287ā€“1330 (2004)

    Google ScholarĀ 

  4. Chow, C.K., Liu, W.: Approximating Discrete Probability Distributions with Dependency Trees. IEEE Trans. Inf. TheoryĀ IT-14(3), 462ā€“467 (1968)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  5. Deming, W.E., Stephan, F.F.: On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known. Ann. of Math. Static.Ā 11, 427ā€“444 (1940)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  6. Diaz, E.: MetaheurĆ­sticas HĆ­bridas para el Aprendizaje de Modelos GrĆ”ficos Markovianos y Aplicaciones. Tesis para optar por el Grado de Doctor en Ciencias de la ComputaciĆ³n. Universidad AutĆ³noma de Aguascalientes, Ags., Mexico (2008)

    Google ScholarĀ 

  7. Diaz, E., Ponce de Leon, E.: Discrete Markov model selection by a genetic algorithm. In: Sossa-Azuela, J.H., Aguilar-IbaƑƉz, C., Alvarado-Mentado, M., Gelbukh, A. (eds.) Avances en Ciencias de la ComputaciĆ³n e IngenierĆ­a de CĆ³mputo, Mexico, vol.Ā 2, pp. 315ā€“324 (2002)

    Google ScholarĀ 

  8. Diaz, E., Ponce de Leon, E.: Markov Structure Random Sampler (MSRS) algorithm from unrestricted discrete graphic Markov models. In: Gelbukh, A., Reyes, C.A. (eds.) Proceedings of the Fifth Mexican International Conference on Artificial Intelligence, pp. 199ā€“206. IEEE Computer Society, Mexico (2006)

    ChapterĀ  Google ScholarĀ 

  9. Haberman, S.J.: The Analysis of Frequency Data. The University of Chicago Press (1974)

    Google ScholarĀ 

  10. Koller, D., Freedman, N., Getoor, L., Taskar, B.: Graphical models in a nutshell in Introduction to Statistical Relational Learning. In: Getoor, L., Taskar, B. (eds.) Stanford (2007)

    Google ScholarĀ 

  11. Kruskal, J.B.: On the Shortest Spanning Tree of a Graph and the Traveling Salesman Problem. Proc. Amer. Math. Soc.Ā 7, 48ā€“50 (1956)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  12. Kuratowski, K.: Introduction to Calculus. Pergamon Press, Warsaw (1961)

    MATHĀ  Google ScholarĀ 

  13. Lauritzen, S.L.: Graphical models. Oxford University Press, USA (1996)

    Google ScholarĀ 

  14. Li, M., Vitanyi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications. Springer, Heidelberg (1993)

    MATHĀ  Google ScholarĀ 

  15. MacKay, J.C.: Information Theory Inference and Learning Algorithms. Cambridge Press (2003)

    Google ScholarĀ 

  16. Zvonkin, A.K., Levin, L.A.: The Complexity of Finite Objects and the Development of the Concepts of Information and Randomness by Means of the Theory of Algorithms. Russ. Math. Surv.Ā 256, 83ā€“124 (1970)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diaz, E., Ponce-de-Leon, E., LarraƱaga, P., Bielza, C. (2009). Probabilistic Graphical Markov Model Learning: An Adaptive Strategy. In: Aguirre, A.H., Borja, R.M., GarciƔ, C.A.R. (eds) MICAI 2009: Advances in Artificial Intelligence. MICAI 2009. Lecture Notes in Computer Science(), vol 5845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05258-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05258-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05257-6

  • Online ISBN: 978-3-642-05258-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics