Skip to main content

Metal–Metal Bonds in Chains of Three or More Metal Atoms: From Homometallic to Heterometallic Chains

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 136))

Abstract

Extended metal atom chains (EMACs) have attracted attention for their unique structural and bonding features. They allow for a systematic study of metal–metal bonding in discrete, oligomeric, polymetallic one-dimensional molecules. Because of their shape and bonding patterns, these complexes are often considered potential molecular wires for molecular electronic applications. As such, the electronic structure of the simplest EMACs, i.e., those that consist of three metals linked together, the ligand systems that have been used to support EMACs, and preliminary work on the conductance of EMACs at the molecular level are discussed. New heterometallic EMACs have also been recently synthesized and are discussed here. While these molecules may be of interest in molecular electronic applications, they also serve as a testing ground for studying the nature of heterometallic electronic effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berry JF (2005) In: Cotton FA, Murillo CA, Walton RA (ed) Multiple bonds between metal atoms. Springer Science, New York

    Google Scholar 

  2. Yeh C-Y, Wang C-C, Chen C-H, Peng S-M (2006) In: Hirao T (ed) Redox systems under nano-space control. Springer, Berlin

    Google Scholar 

  3. Bénard M, Berry JF, Cotton FA, Gaudin C, López X, Murillo CA, Rohmer M-M (2006) Inorg Chem 45:3932

    Article  Google Scholar 

  4. Berry JF, Cotton FA, Daniels LM, Murillo CA, Wang X (2003) Inorg Chem 42:2418

    Article  CAS  Google Scholar 

  5. Berry JF, Cotton FA, Lu T, Murillo CA, Roberts BK, Wang X (2004) J Am Chem Soc 126:7082

    Article  CAS  Google Scholar 

  6. Clérac R, Cotton FA, Daniels LM, Dunbar KR, Murillo CA, Pascual I (2000) Inorg Chem 39:748

    Article  Google Scholar 

  7. Berry JF, Cotton FA, Murillo CA, Roberts BK (2004) Inorg Chem 43:2277

    Article  CAS  Google Scholar 

  8. Benbellat N, Rohmer M-M, Bénard M (2001) Chem Commun 2368

    Google Scholar 

  9. Rohmer M-M, Bénard M (2002) J Cluster Sci 13:333

    Article  CAS  Google Scholar 

  10. Clérac R, Cotton FA, Daniels LM, Dunbar KR, Kirschbaum K, Murillo CA, Pinkerton AA, Schultz AJ, Wang X (2000) J Am Chem Soc 122:6226

    Article  Google Scholar 

  11. Parkin G, Hoffmann R (1994) Angew Chem Int Ed Eng 33:1462

    Article  Google Scholar 

  12. Parkin G (1993) Chem Rev 93:887

    Article  CAS  Google Scholar 

  13. Parkin G (1992) Acc Chem Res 25:455

    Article  CAS  Google Scholar 

  14. Rohmer M-M, Strich A, Bénard M, Malrieu JP (2001) J Am Chem Soc 123:9126

    Article  CAS  Google Scholar 

  15. Pantazis DA, McGrady JE (2006) J Am Chem Soc 128:4128

    Article  CAS  Google Scholar 

  16. Pantazis DA, Murillo CA, McGrady JE (2008) Dalton Trans 608

    Google Scholar 

  17. Clérac R, Cotton FA, Dunbar KR, Lu TB, Murillo CA, Wang X (2000) J Am Chem Soc 122:2272

    Article  Google Scholar 

  18. Clérac R, Cotton FA, Dunbar KR, Murillo CA, Pascual I, Wang X (1999) Inorg Chem 38:2655

    Article  Google Scholar 

  19. Berry JF, Cotton FA, Murillo CA (2003) Dalton Trans 3015

    Google Scholar 

  20. Kiehl P, Rohmer M-M, Bénard M (2004) Inorg Chem 43:3151

    Article  CAS  Google Scholar 

  21. López X, Bénard M, Rohmer M-M (2006) J Mol Struct Theochem 777:53

    Article  Google Scholar 

  22. López X, Rohmer M-M, Bénard M (2008) J Mol Struct 890:18

    Article  Google Scholar 

  23. Kahn O (1993) Molecular magnetism. Wiley, New York

    Google Scholar 

  24. Kuo CK, Liu IPC, Yeh CY, Chou CH, Tsao TB, Lee G-H, Peng S-M (2007) Chem Eur J 13:1442

    Article  CAS  Google Scholar 

  25. Armstrong DW, Cotton FA, Petrovic AG, Polavarapu PL, Warnke MM (2007) Inorg Chem 46:1535

    Article  CAS  Google Scholar 

  26. Warnke MM, Cotton FA, Armstrong DW (2007) Chirality 19:179

    Article  CAS  Google Scholar 

  27. Lai SH, Hsiao CJ, Ling JW, Wangb WZ, Peng S-M, Chen IC (2008) Chem Phys Lett 456:181

    Article  CAS  Google Scholar 

  28. Hsiao CJ, Lai SH, Chen IC, Wang W-Z, Peng S-M (2008) J Phys Chem A 112:13528

    Article  CAS  Google Scholar 

  29. Li H, Yan J, Xu YY, Gao WG, Lee G-H, Peng S-M (2007) J Coord Chem 60:2731

    Article  CAS  Google Scholar 

  30. Berry JF, Cotton FA, Murillo CA (2004) Organometallics 23:2503

    Article  CAS  Google Scholar 

  31. Kuo CK, Chang JC, Yeh CY, Lee G-H, Wang C-C, Peng S-M (2005) Dalton Trans 3696

    Google Scholar 

  32. Cotton FA, Chao H, Li Z, Murillo CA, Wang QS (2008) J Organomet Chem 693:1412

    Article  CAS  Google Scholar 

  33. Cotton FA, Murillo CA, Wang QS (2007) Inorg Chem Commun 10:1088

    Article  CAS  Google Scholar 

  34. Cotton FA, Murillo CA, Wang QS, Young MD (2008) Eur J Inorg Chem 5257

    Google Scholar 

  35. Ismayilov RH, Wang W-Z, Lee G-H, Wang RR, Liu IPC, Yeh C-Y, Peng S-M (2007) Dalton Trans 2898

    Google Scholar 

  36. Huang MY, Yeh CY, Lee G-H, Peng S-M (2006) Dalton Trans 5683

    Google Scholar 

  37. López X, Bénard M, Rohmer M-M (2007) Inorg Chem 46:5

    Article  Google Scholar 

  38. Lai SY, Lin TW, Chen YH, Wang CC, Lee G-H, Yang MH, Leung MK, Peng S-M (1999) J Am Chem Soc 121:250

    Article  CAS  Google Scholar 

  39. López X, Huang MY, Huang GC, Peng S-M, Li FY, Bénard M, Rohmer M-M (2006) Inorg Chem 45:9075

    Article  Google Scholar 

  40. Cotton FA, Daniels LM, Lu TB, Murillo CA, Wang X (1999) J Chem Soc Dalton Trans 517

    Google Scholar 

  41. Shieh SJ, Chou CC, Lee GH, Wang CC, Peng S-M (1997) Angew Chem Int Ed Eng 36:56

    Article  CAS  Google Scholar 

  42. Yin CX, Huang GC, Kuo CK, Fu MD, Lu HC, Ke JH, Shih KN, Huang YL, Lee GH, Yeh CY, Chen CH, Peng S-M (2008) J Am Chem Soc 130:10090

    Article  CAS  Google Scholar 

  43. Wang WZ, Ismayilov RH, Wang RR, Huang YL, Yeh CY, Lee GH, Peng S-M (2008) Dalton Trans 6808

    Google Scholar 

  44. Liu IPC, Bénard M, Hasanov H, Chen IWP, Tseng WH, Fu MD, Rohmer M-M, Chen CH, Lee GH, Peng S-M (2007) Chem Eur J 13:8667

    Article  CAS  Google Scholar 

  45. Chien CH, Chang JC, Yeh CY, Lee GH, Fang JM, Peng S-M (2006) Dalton Trans 2106

    Google Scholar 

  46. Chien CH, Chang JC, Yeh CY, Lee GH, Fang JM, Song Y, Peng S-M (2006) Dalton Trans 3249

    Google Scholar 

  47. Bencini A, Berti E, Caneschi A, Gatteschi D, Giannasi E, Invernizzi I (2002) Chem Eur J 8:3660

    Article  CAS  Google Scholar 

  48. Tsao TB, Lo SS, Yeh CY, Lee GH, Peng S-M (2007) Polyhedron 26:3833

    Article  CAS  Google Scholar 

  49. Hasan H, Tan UK, Lee GH, Peng S-M (2007) Inorg Chem Commun 10:983

    Article  CAS  Google Scholar 

  50. Chen YH, Lee CC, Wang CC, Lee GH, Lai SY, Li FY, Mou CY, Peng S-M (1999) Chem Commun 1667

    Google Scholar 

  51. Wang WZ, Ismayilov RH, Lee GH, Liu IPC, Yeh CY, Peng S-M (2007) Dalton Trans 830

    Google Scholar 

  52. Peng S-M, Wang CC, Jang YL, Chen YH, Li FY, Mou CY, Leung MK (2000) J Magn Magn Mater 209:80

    Article  CAS  Google Scholar 

  53. Ismayilov RH, Wang WZ, Wang RR, Yeh CY, Lee GH, Peng S-M (2007) Chem Commun 1121

    Google Scholar 

  54. Ismayilov RH, Wang WZ, Wang RR, Huang YL, Yeh CY, Lee GH, Peng S-M (2008) Eur J Inorg Chem 4290

    Google Scholar 

  55. Cotton FA, Chao H, Murillo CA, Wang QS (2006) Dalton Trans 5416

    Google Scholar 

  56. Lin SY, Chen IWP, Chen CH, Hsieh MH, Yeh CY, Lin TW, Chen YH, Peng S-M (2004) J Phys Chem B 108:959

    Article  CAS  Google Scholar 

  57. Chen IWP, Fu MD, Tseng WH, Yu JY, Wu SH, Ku CJ, Chen CH, Peng S-M (2006) Angew Chem Int Ed 45:6244

    Article  CAS  Google Scholar 

  58. Chen I-WP, Fu MD, Tseng WH, Yu JY, Wu SH, Ku CJ, Chen C-H, Peng S-M (2006) Angew Chem Int Ed 45:6244

    Article  Google Scholar 

  59. Hsu LY, Huang QR, Jin BY (2008) J Phys Chem C 112:10538

    Article  CAS  Google Scholar 

  60. Chae DH, Berry JF, Jung S, Cotton FA, Murillo CA, Yao Z (2006) Nano Lett 6:165

    Article  CAS  Google Scholar 

  61. Rohmer M-M, Liu IPC, Lin JC, Chiu MJ, Lee CH, Lee G-H, Bénard M, López X, Peng S-M (2007) Angew Chem Int Ed 46:3533

    Article  CAS  Google Scholar 

  62. Liu IPC, Lee G-H, Peng S-M, Bénard M, Rohmer M-M (2007) Inorg Chem 46:9602

    Article  CAS  Google Scholar 

  63. Nippe M, Berry JF (2007) J Am Chem Soc 129:12684

    Article  CAS  Google Scholar 

  64. Nippe M, Victor E, Berry JF (2008) Eur J Inorg Chem 5569

    Google Scholar 

  65. Huang GC, Bénard M, Rohmer M-M, Li LA, Chiu MJ, Yeh CY, Lee GH, Peng S-M (2008) Eur J Inorg Chem 1767

    Google Scholar 

  66. Kitagawa Y, Nakano S, Kawakami T, Mashima K, Yamaguchi K (2003) Polyhedron 22:2019

    Article  CAS  Google Scholar 

  67. Mashima K, Nakano H, Mori T, Takaya H, Nakamura A (1992) Chem Lett 185

    Google Scholar 

  68. Mashima K, Nakano H, Nakamura A (1993) J Am Chem Soc 115:11632

    Article  CAS  Google Scholar 

  69. Nakano H, Nakamura A, Mashima K (1996) Inorg Chem 35:4007

    Article  CAS  Google Scholar 

  70. Mashima K, Nakano H, Nakamura A (1996) J Am Chem Soc 118:9083

    Article  CAS  Google Scholar 

  71. Mashima K, Tanaka M, Tani K, Nakamura A, Takeda S, Mori W, Yamaguchi K (1997) J Am Chem Soc 119:4307

    Article  CAS  Google Scholar 

  72. Mashima K, Tanaka M, Kaneda Y, Fukumoto A, Mizomoto H, Tani K, Nakano H, Nakamura A, Sakaguchi T, Kamada K, Ohta K (1997) Chem Lett 411

    Google Scholar 

  73. Tanaka M, Mashima K, Nishino M, Takeda S, Mori W, Tani K, Yamaguchi K, Nakamura A (2001) Bull Chem Soc Japan 74:67

    Article  CAS  Google Scholar 

  74. Mashima K, Fukumoto A, Nakano H, Kaneda Y, Tani K, Nakamura A (1998) J Am Chem Soc 120:12151

    Article  CAS  Google Scholar 

  75. Ruffer T, Ohashi M, Shima A, Mizomoto H, Kaneda Y, Mashima K (2004) J Am Chem Soc 126:12244

    Article  Google Scholar 

  76. Mashima K, Shimoyama Y, Kusumi Y, Fukumoto A, Yamagata T, Ohashi M (2007) Eur J Inorg Chem 235

    Google Scholar 

  77. Ohashi M, Shima A, Ruffer T, Mizomoto H, Kaneda Y, Mashima K (2007) Inorg Chem 46:6702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am very grateful to the National Science Foundation for their support of my research group’s work on heterometallic electronic effects (CHE-0745500). I would like to dedicate this review to the memory of my graduate mentor, F. Albert Cotton (1930–2007). His untimely death has been a major blow to this field and to the chemical community at large. He would have been intrigued and impassioned by some of the latest results reviewed herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Berry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berry, J.F. (2010). Metal–Metal Bonds in Chains of Three or More Metal Atoms: From Homometallic to Heterometallic Chains. In: Parkin, G. (eds) Metal-Metal Bonding. Structure and Bonding, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05243-9_1

Download citation

Publish with us

Policies and ethics