Skip to main content

Tooth-Implant Life Cycle Design

  • Chapter
Computer Methods in Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 1))

  • 1474 Accesses

Abstract

Dental restorations with the application of implants are very effective and commonly used in dental treatment. However, for some percent of patients, diverse complications can be observed. These problems can be caused by mechanical reasons such as loosening of the retaining screws or fracture and cracking of the dental implant components. These problems suggest the need for permanent modernization and development of dental implants. This paper describes selected aspects of the life cycle design process of the tooth-implant system Osteoplant. The authors would like to present what they mean by implant life cycle design as one part of the whole Digital Product Development (DPD) process. The sequential stages of this process are described and the tools and methods are discussed. The attention is focused on numerical simulations the mechanical behavior of dental implants and genetically based optimization algorithms. The tools and methodology of FE simulations of implant behavior are described. The whole process of optimization of a dental implant system is explained, and a self-developed optimization tool based on a genetic algorithm is presented. These processes are crucial for modern design procedure beyond the life sciences industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abaqus Manuals, SIMULIA, Pawtucket (2007)

    Google Scholar 

  2. Akahori, T., Niinomi, M., Fukui, H., Ogawa, M., Toda, H.: Improvement in fatigue characteris-tics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Materials Science and Engineering C25, 248–254 (2005)

    Google Scholar 

  3. Baptista, C.A.R.P., Schneider, S.G., Taddei, E.B., da Silva, H.M.: Fatigue behavior of arc melted Ti-13Nb-13Zr alloy. International Journal of Fatigue 26, 967–973 (2004)

    Article  Google Scholar 

  4. Bielicki, J., Prośba-Mackiewicz, M., Bereznowski, Z.: Chewing forces and their measurement (in polish). Protetyka Stomatologiczna 25, 241–251 (1975)

    Google Scholar 

  5. Bozkaya, D., Müftü, S.: Mechanics of the taper integrated screwed-in (TIS) abutments used in dental implants. Journal of Biomechanics 38, 87–97 (2005)

    Google Scholar 

  6. Draper, J.: Modern metal fatigue analysis. HKS, Inc. Pawtucket (1999)

    Google Scholar 

  7. fe-safe Manuals, Safe Technology Limited, U.K. (2005)

    Google Scholar 

  8. Genna, F.: Shakedown, self-stresses, and unilateral contact in a dental implant problem. European Journal of Mechanics A/Solids 23, 485–498 (2004)

    Article  Google Scholar 

  9. Goodacre, C.J., Bernal, G., Rungcharassaeng, K., Kan, J.Y.: Clinical complication with implants and implant prostheses. International Journal of Prosthodontics 90, 121–129 (2003)

    Google Scholar 

  10. Guilherme, A.S., Henriques, G.E.P., Zavanelli, R.A., Mesquita, M.F.: Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols. Journal of Prosthetic Dentistry 93(4), 378–385 (2005)

    Article  Google Scholar 

  11. Hȩdzelek, W., Zagalak, R., Łodygowski, T., Wierszycki, M.: Biomechanical studies of the parts of prosthetic implants using finite element method (in polish). Protetyka Stomatologiczna 51(1), 23–29 (2004)

    Google Scholar 

  12. Ka̧kol, W., Łodygowski, T., Wierszycki, M.: Numerical analysis of dental implant fatigue. Acta of Bioengineering and Biomechanics 4(1), 795–796 (2002)

    Google Scholar 

  13. Khraisat, A., Stegaroiu, R., Nomura, S., Miyakawa, O.: Fatigue resistance of two im-plant/abutment joint designs. Journal of Prosthetic Dentistry 88(6), 604–610 (2002)

    Article  Google Scholar 

  14. Koczorowski, R., Surdacka, A.: Evaluation of bone loss at single-stage and two-stage implant abutments of fixed partial dentures. Advances in Medical Sciences 51, 43–46 (2006)

    Google Scholar 

  15. Korewa, W., Zygmunt, K.: Basics of Machine Construction (in polish). Wydawnictwo Nauko-wo-Techniczne, Warszawa (1969)

    Google Scholar 

  16. Mericske-Stern, R., Assal, P., Mericske, E., Burgin, W.: Occlusal force and tactile sensibility measured an partially edentulous patients with ITI implants. The International Journal of Oral and Maxillofacial Implants 3, 345–353 (1995)

    Google Scholar 

  17. Mericske-Stern, R., Assal, P., Buergin, W.: Simultaneous force measurements in 3 dimensions on oral endosseous implants in vitro and in vivo. Clinical Oral Implants Research 7, 378–386 (1996)

    Article  Google Scholar 

  18. Mericske-Stern, R.: Three-Dimensional Force Measurements With Mandibular Overdentures Connected to Implants by Ball-Shaped Retentive Anchors. A Clinical Study. The International Journal of Oral and Maxillofacial Implants 13, 36–43 (1998)

    Google Scholar 

  19. Merz, B.R., Hunenbart, S., Belser, U.C.: Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. The International Journal of Oral and Maxillofacial Implants 15(4), 519–526 (2000)

    Google Scholar 

  20. Milewski, G.: Strength aspects of biomechanical interaction bone tissue-implant in dental bio-mechanics (in polish). Zeszyty Naukowe Politechniki Krakowskiej seria Mechanika 89 (2002)

    Google Scholar 

  21. Misch, C.E.: Contemporary Implant Dentistry. Mosby St. Louis (1999)

    Google Scholar 

  22. Morneburg, T.R., Pröschel, P.A.: In vivo forces on implants influenced by occlusal scheme and food consistency. International Journal of Prosthodontics 16, 481–486 (2003)

    Google Scholar 

  23. Morneburg, T.R., Pröschel, P.A.: Measurment of masticatory forces and implant load: a methodologic clinical study. International Journal of Prosthodontics 15, 20–27 (2002)

    Google Scholar 

  24. Niinomi, M.: Mechanical properties of biomedical titanium alloys. Materials Science and Engineering 243, 231–236 (1998)

    Article  Google Scholar 

  25. Sakaguchi, R.L., Borgersen, S.E.: Nonlinear finite element contact analysis of dental implant components. The International Journal of Oral and Maxillofacial Implants 7, 655–661 (1993)

    Google Scholar 

  26. Snauwaert, K., Duyck, J., van Steeberghe, D., Quirynen, M., Naert, I.: Time dependent failure rate and marginal bone loss of implant supported prosthese: a 15-year follow-up study. Clinical Oral Investigations 4, 13–20 (2000)

    Article  Google Scholar 

  27. Wierszycki, M.: Numerical analysis of strength of the dental implants and the human spine motion segment (in polish). PhD Thesis, Poznan University of Technology, Poznan (2007)

    Google Scholar 

  28. Wierszycki, M., Ka̧kol, W., Łodygowski, T.: Fatigue algorithm for dental implant. Foundations of Civil and Environmental Engineering 7, 363–380 (2006)

    Google Scholar 

  29. Wierszycki, M., Ka̧kol, W., Łodygowski, T.: Numerical complexity of selected biomechanical problems. Journal of Theoretical and Applied Mechanics 44(4), 797–818 (2006)

    Google Scholar 

  30. Zagalak, R.: Evaluation of mechanical properties of two dental implants Osteoplant (in polish). PhD Thesis, University of Medical Sciences in Poznan, Poznan (2003)

    Google Scholar 

  31. Zagalak, R., Hȩdzelek, W., Łodygowski, T., Wierszycki, M.: Influence of the loss of bone and the loss their density on risk of fracture of the implant - a study using finite element (in polish). Implantoprotetyka 6(1), 3–7 (2007)

    Google Scholar 

  32. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. Elsevier, Amsterdam (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Łodygowski, T., Wierszycki, M., Szajek, K., Hȩdzelek, W., Zagalak, R. (2010). Tooth-Implant Life Cycle Design. In: Kuczma, M., Wilmanski, K. (eds) Computer Methods in Mechanics. Advanced Structured Materials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05241-5_21

Download citation

Publish with us

Policies and ethics