Skip to main content

Biomechanical Basis of Tissue–Implant Interactions

  • Chapter
Book cover Computer Methods in Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 1))

Abstract

Tissue-implant interactions were analysed by investigations of bone adaptation processes, especially in the region surrounding the implant. In such cases all factors stimulating bone negative remodelling should be taken in consideration. Because of that, a three-step analysis of implant alignment to the surrounding tissues was carried out. Basic parameters of the bone-implant interaction were estimated (on the macro level: stiffness characteristics, shear strains distribution, and bone tissue density distribution; on the micro level: trabecular structures development, trabecular microcracks distribution, and bone cells strain distribution). Estimation of each parameter was carried out by development of numerical tools which enabled control of bone tissue changes caused by changes in the implant design. All steps of the analysis were carried out using FE models and own simulation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, Y.H., Draughn, R.A.: Biomechanical testing of bone and the bone – implant interface. CRC Press, New York (2000)

    Google Scholar 

  2. Beaupre, G.S., Orr, T.E., Carter, D.R.: An approach for time-dependent bone remodeling and remodeling applications: a preliminary simulation. Journal of Orthop. Res. 8, 662–670 (1990)

    Article  Google Scholar 

  3. Burr, D.B., Robling, A.G., Turner, C.H.: Effects of Biomechanical Stress on Bones in Animals. Bone 30, 781–786 (2002)

    Article  Google Scholar 

  4. Bedzinski, R.: Biomechanical engineering - selected topics. Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw (1997) (in Polish)

    Google Scholar 

  5. Bedzinski, R., Ostrowska, A., Scigala, K.: Investigations of mechanical structure of long bone. Machine Dynamics Problems 28, 45–50 (2004)

    Google Scholar 

  6. Bedzinski, R., Scigala, K.: FEM analysis of strain distribution in tibia bone and relationship between strains and adaptation of bone tissue. Computer Assisted Mechanics and Engineering Sciences 10, 353–368 (2003)

    Google Scholar 

  7. Bedzinski, R., Scigala, K.: Problems of bone – orthopedic implant interactions. Biomechanica Hungarica 1, 47–56 (2008)

    Google Scholar 

  8. Carter, D.: Skeletal function and form. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  9. Cowin, S.C.: Bone mechanics handbook, 2nd edn. CRC Press, New York (2001)

    Google Scholar 

  10. Currey, J.D.: The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. Journal of Biomechanics 21, 131–139 (1998)

    Article  Google Scholar 

  11. Frost, H.M.: A determinant of bone architecture. The minimum effective strain. Clinical Orthopedic 175, 286–292 (1983)

    Google Scholar 

  12. Frost, H.M.: Bone mass and the mechanostat: a proposal. Anat. Rec. 219, 1–9 (1987)

    Article  Google Scholar 

  13. Huiskes, R.: If bone is the answer, then what is the question? J. Anat. 197, 145–156 (2000)

    Article  Google Scholar 

  14. Huiskes, R., Mullender, M.G.: Osteocytes and Bone Lining Cells: Which are the Best Candidates for Mechano-Sensors in Cancellous Bone? Bone 20, 527–532 (1997)

    Article  Google Scholar 

  15. Hurwitz, D.E., Sumner, D.R., Andriacchi, T., Sugar, D.A.: Dynamic knee loads during gait predict tibial bone distribution. Journal of Biomechanics 27, 423–430 (1998)

    Article  Google Scholar 

  16. Knets, I., et al.: Bond strength of implant to the bone tissue and the stress - strain state of bone. Acta of Bioengineering and Biomechanics 8 (2006)

    Google Scholar 

  17. Maquet, P.G.J.: Biomechanics of the knee, 2nd edn. Springer, New York (1977)

    Google Scholar 

  18. Martin, R.B., Burr, D.B.: Structure, Function and Adaptation of Compact Bone. Raven Press, New York (1989)

    Google Scholar 

  19. Piekarski, K.R.: Biomechanics of bone. In: Morecki, A., Fidelus, K., Kedzior, K., Witt, A. (eds.) VII-A International Series of Biomechanics, Warszawa – Baltimore (1981)

    Google Scholar 

  20. Pozowski, A., Bedzinski, R., Scigala, K.: Stress distribution in varus knee after operative correction of its mechanical axis. Acta of Bioengineering and Biomechanics 3, 31–40 (2001)

    Google Scholar 

  21. Rho, J.Y., Kuhun-Spearing, L., Zioupos, P.: Mechanical properties and hierarchical structure of bone. Med. Eng. Phys. 20, 92–104 (1998)

    Article  Google Scholar 

  22. Taylor, M., Tanner, K.E., Freeman, M.A.R.: Finite element analysis of the implanted proximal tibia: a relationship between the initial cancellous bone stresses and implant migration. Journal of Biomechanics 31, 303–310 (1998)

    Article  Google Scholar 

  23. Tsubota, K., Adachi, T., Tomita, Y.: Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. Journal of Biomechanics 35, 1541–1551 (2002)

    Article  Google Scholar 

  24. Tsubota, K.: Spatial and temporal regulation of cancellous bone structure. Medical Engineering & Physics 27, 305–311 (2005)

    Article  Google Scholar 

  25. Weinans, H., Huiskes, R., Grootenboer, H.J.: The Behavior of Adaptive Bone-Remodeling Simulation Models. Journal of Biomechanics 25, 1425–1441 (1992)

    Article  Google Scholar 

  26. Zioupos, P.: The accumulation of fatigue microdamage in human cortical bone. Clinical Biomechanics 11, 365–375 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Bedzinski, R., Scigala, K. (2010). Biomechanical Basis of Tissue–Implant Interactions. In: Kuczma, M., Wilmanski, K. (eds) Computer Methods in Mechanics. Advanced Structured Materials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05241-5_20

Download citation

Publish with us

Policies and ethics