Skip to main content

Automatic Selection of Object Recognition Methods Using Reinforcement Learning

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 262))

Abstract

Selecting which algorithms should be used by a mobile robot computer vision system is a decision that is usually made a priori by the system developer, based on past experience and intuition, not systematically taking into account information that can be found in the images and in the visual process itself to learn which algorithm should be used, in execution time. This paper presents a method that uses Reinforcement Learning to decide which algorithm should be used to recognize objects seen by a mobile robot in an indoor environment, based on simple attributes extracted on-line from the images, such as mean intensity and intensity deviation. Two state-of-the-art object recognition algorithms can be selected: the constellation method proposed by Lowe together with its interest point detector and descriptor, the Scale-Invariant Feature Transform and Nistér and Stewénius Vocabulary Tree approach. A set of empirical evaluations was conducted using a household mobile robots image database, and results obtained shows that the approach adopted here is very promising.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhanu, B., Peng, J.: Adaptive integrated image segmentation and object recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 30(4), 427–441 (2000)

    Article  Google Scholar 

  • Borotschnig, H., Paletta, L., Prantl, M., Pinz, A.: Appearance-based active object recognition. Image and Vision Computing 18(9), 715–728 (1999)

    Article  Google Scholar 

  • Bradski, G.: The OpenCV Library. Dr Dobb’s Journal of Software Tools, 120–125 (2000)

    Google Scholar 

  • Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  • Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Sebe, N., Lew, M., Huang, T.S. (eds.) ECCV/HCI 2004. LNCS, vol. 3058, pp. 1–22. Springer, Heidelberg (2004)

    Google Scholar 

  • Darrell, T.: Reinforcement learning of active recognition behaviors, Interval research technical report 1997-045. In: Advances in Neural Information Processing Systems, NIPS 1995, vol. 8, pp. 858–864. MIT Press, Cambridge (1995), http://www.interval.com/papers/1997-045 , portions of this paper previously appeared

  • Darrell, T., Pentland, A.: Active gesture recognition using learned visual attention. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 858–864. MIT Press, Cambridge (1996a)

    Google Scholar 

  • Darrell, T., Pentland, A.: Active gesture recognition using partially observable markov decision processes. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 3, pp. 984–988 (1996b), doi:10.1109/ICPR.1996.547315

    Google Scholar 

  • Draper, B.A., Bins, J., Baek, K.: ADORE: Adaptive object recognition. In: Christensen, H.I. (ed.) ICVS 1999. LNCS, vol. 1542, pp. 522–537. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  • Fogel, I., Sagi, D.: Gabor filters as texture discriminator. Biological Cybernetics 61(2), 103–113 (1989), http://dx.doi.org/10.1007/BF00204594

    Article  Google Scholar 

  • Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 532–550 (1987)

    Article  Google Scholar 

  • Hossain, I., Liu, J., You, J.: Tropical cyclone pattern recognition for intensity and forecasting analysis from satellite imagery. In: IEEE International Conference on Systems, Man, and Cybernetics, IEEE SMC 1999 Conference Proceedings 1999, vol. 6, pp. 851–856 (1999), doi:10.1109/ICSMC.1999.816663

    Google Scholar 

  • Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  • Minut, S., Mahadevan, S.: A reinforcement learning model of selective visual attention. In: AGENTS 2001: Proceedings of the fifth international conference on Autonomous agents, pp. 457–464. ACM, New York (2001), http://doi.acm.org/10.1145/375735.376414

    Chapter  Google Scholar 

  • Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  • Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2161–2168 (2006)

    Google Scholar 

  • Paletta, L., Pinz, A.: Active object recognition by view integration and reinforcement learning. Robotics and Autonomous Systems 31(1-2), 71–86 (2000)

    Article  Google Scholar 

  • Paletta, L., Prantl, M., Pinz, A.: Reinforcement learning of 3-d object recognition from appearance. In: CONALD 1998: Proceedings of the 1998 Conference on Automated Learning and Discovery (1998)

    Google Scholar 

  • Paletta, L., Fritz, G., Seifert, C.: Q-learning of sequential attention for visual object recognition from informative local descriptors. In: ICML 2005: Proceedings of the 22nd International Conference on Machine Learning, pp. 649–656. ACM, New York (2005), http://doi.acm.org/10.1145/1102351.1102433

    Chapter  Google Scholar 

  • Paris, S., Kornprobst, P., Tumblin, J., Durand, F.: A gentle introduction to bilateral filtering and its applications. In: SIGGRAPH 2007: ACM SIGGRAPH 2007 courses, p. 1. ACM, New York (2007), http://doi.acm.org/10.1145/1281500.1281602

    Google Scholar 

  • Peng, J., Bhanu, B.: Closed-loop object recognition using reinforcement learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(2), 139–154 (1998a)

    Article  Google Scholar 

  • Peng, J., Bhanu, B.: Delayed reinforcement learning for adaptive image segmentation and feature extraction. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 28(3), 482–488 (1998b)

    Article  Google Scholar 

  • Peng, J., Williams, R.J.: Incremental multi-step q-learning. Mach. Learn. 22(1-3), 283–290 (1996), http://dx.doi.org/10.1007/BF00114731

    Article  Google Scholar 

  • Ramisa, A., Vasudevan, S., Scaramuzza, D., López de Mántaras, R., Siegwart, R.: A tale of two object recognition methods for mobile robots. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 353–362. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  • Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems. Tech. Rep. CUED/F-INFENG/TR 166, Cambridge University Engineering Department (1994)

    Google Scholar 

  • Sahba, F., Tizhoosh, H.R., Salama, M.M.M.A.: A reinforcement agent for object segmentation in ultrasound images. Expert Syst. Appl. 35(3), 772–780 (2008), http://dx.doi.org/10.1016/j.eswa.2007.07.057

    Article  Google Scholar 

  • Shokri, M., Tizhoosh, H.R.: Using reinforcement learning for image thresholding. In: IEEE CCECE 2003 Canadian Conference on Electrical and Computer Engineering, vol. 2, pp. 1231–1234 (2003), doi:10.1109/CCECE.2003.1226121

    Google Scholar 

  • Shokri, M., Tizhoosh, H.R.: Q(lambda)-based image thresholding. In: CRV 2004: Proceedings of the 1st Canadian Conference on Computer and Robot Vision, pp. 504–508. IEEE Computer Society Press, Los Alamitos (2004), http://doi.ieeecomputersociety.org/10.1109/CCCRV.2004.1301490

    Chapter  Google Scholar 

  • Shokri, M., Tizhoosh, H.R.: A reinforcement agent for threshold fusion. Appl. Soft Comput. 8(1), 174–181 (2008)

    Article  Google Scholar 

  • Sivic, J., Schaffalitzky, F., Zisserman, A.: Object Level Grouping for Video Shots. International Journal of Computer Vision 67(2), 189–210 (2006)

    Article  Google Scholar 

  • Sutton, R., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  • Taylor, G.W.: Reinforcement Learning for Parameter Control of Image-Based Applications. MSc Thesis, University of Waterloo, Ontario, Canada (2004)

    Google Scholar 

  • Tizhoosh, H., Taylor, G.: Reinforced contrast adaptation. International Journal of Image and Graphics 6(3), 377–392 (2006)

    Article  Google Scholar 

  • Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV 1998: Proceedings of the Sixth International Conference on Computer Vision, p. 839. IEEE Computer Society, Washington (1998)

    Google Scholar 

  • Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD Thesis, University of Cambridge (1989)

    Google Scholar 

  • Weldon, T.P., Higgins, W.E., Dunn, D.F.: Efficient gabor filter design for texture segmentation. Pattern Recognition 29(12), 2005–2015 (1996), http://dx.doi.org/10.1016/S0031-32039600047-7

    Article  Google Scholar 

  • Whitehead, S.D., Ballard, D.H.: Learning to perceive and act by trial and error. Mach. Learn. 7(1), 45–83 (1991), http://dx.doi.org/10.1023/A:1022619109594

    Google Scholar 

  • Wolf, C., Jolion, J.M.: Extraction and recognition of artificial text in multimedia documents. Pattern Anal. Appl. 6(4), 309–326 (2003), http://dx.doi.org/10.1007/s10044-003-0197-7

    MathSciNet  Google Scholar 

  • Yin, P.Y.: Maximum entropy-based optimal threshold selection using deterministic reinforcement learning with controlled randomization. Signal Process. 82(7), 993–1006 (2002), http://dx.doi.org/10.1016/S0165-16840200203-7

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bianchi, R.A.C., Ramisa, A., de Mántaras, R.L. (2010). Automatic Selection of Object Recognition Methods Using Reinforcement Learning. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds) Advances in Machine Learning I. Studies in Computational Intelligence, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05177-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05177-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05176-0

  • Online ISBN: 978-3-642-05177-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics