Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 55))

  • 2012 Accesses

Abstract

Epilepsy is one of the most common neurological disorders, affecting around 1 in 200 of the population. However, identifying epilepsy can be difficult because seizures tend to be relatively infrequent events and an electroencephalogram (EEG) does not always show abnormalities. The aim of this project is to develop a new methods that could improve the diagnosis of epilepsy, leading to earlier treatment and to a better quality of life for epileptic patients. The above methods must be composed with a flexible hardware development in order to discriminate noise and bad signals from correct EEG, MEG (Magnetoencephalogram), Eye Image recognition, Somnography and DTI (Diffusion Tensor Imaging). Even if there are EEG signal classifiers, it is suitable to perform a correct signal processing according to particular clinical reference, that is, it is difficult to have a classifier for all circumstances but it is possible to adapt EEG processing on current patient. Preliminary results are described for processing biomedical signals, namely EEG signals, in order to train the adaptive filtering in recognizing and choosing correct frequencies at which it is possible to reduce noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. WFUBMC, Wake Forest University Baptist Medical Center. Diagnostic Neurology Department. EEG Laboratory (2007)

    Google Scholar 

  2. Webster, J.G.: Medical Instrumentation. Application and Design, II edn. Wiley, Chichester (1977)

    Google Scholar 

  3. Lay-Ekuakille, A., et al.: Power Line Interference Cancelling in EEG Inspection. In: Proc. IMEKO TC-4 Congress, Gdynia-Jurata, Poland (2005)

    Google Scholar 

  4. Abeyratne, U.R., Kinouchi, Y., Oki, H., Okada, I., Shichijo, F., Matsumoto, K.: Artificial neural networks for source localization in the human brain. Brain Topogr 4(I), 3–21 (1991)

    Article  Google Scholar 

  5. Abeyratne, U.R., Zhang, G., Saratchandran, P.: EEG source localization: a comparative study of classical and neural network rnethods. Int. J. Neural Syst. ll (4), 349–360 (2001)

    Google Scholar 

  6. Ahlfors, S.P., Simpson, G.V., Dale, A.M., Belliveau, J.W., Liu, A.K., Korvenoja, A., Virtanen, J., Huotilainen, M., Tootell, R.B., Aronen, H.J., Ilmoniemi, R.J.: Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. Journal of Neurophysiology 82(5), 2545–2555 (1999)

    Google Scholar 

  7. Algaver, T., Smith, T., Vijai, F.: The use of artificial neural networks in biomedical technologies: an introduction. Biomed. lnstrum. Technol. 28, 315–322 (1994)

    Google Scholar 

  8. Mizrahi, E.M.: Clinical, electroencephalographic, and quantitative predictors of neonatal seizures: the ACNs Presidential Address. In: Program and abstracts of the 55th Annual Meeting of the American Epilepsy Society, Philadelphia, Pennsylvania. Epilepsia, 42(suppl. 7), p.3 (2001)

    Google Scholar 

  9. Andrzejak, R.G.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E 64, 061907 (2001)

    Google Scholar 

  10. Litt, B., Lehnertz, K.: Seizure prediction and the preseizure period. Current Opinion in Neurology 15, 173–177 (2002)

    Article  Google Scholar 

  11. Mormann, F., et al.: On the predictability of epileptic seizures. Clinical Neurophysiology 116, 567–587 (2005)

    Article  Google Scholar 

  12. Navarro, V., et al.: Seizure anticipation: Do mathematical measures correlate with video-EEG evaluation? Epilepsia 46(3), 385–396 (2005)

    Article  Google Scholar 

  13. Chua, K.C., Chandran, V., Acharya, R., Lim, C.M.: Automatic identification of Epilepsy by HOS and power spectrum parameters using EEG signals: a comparative study. In: 30th Annual International IEEE EMBS Conference, Vancouver, BC, Canada, August 20-24 (2008)

    Google Scholar 

  14. EEG time series database, http://www.meb.unibonn.de/epileptologie/science/physik/eegdata

  15. Chua, K.C., Chandran, V., Acharya, R., Lim, C.M.: Higher Order Spectral (HOS) Analysis of Epileptic EEG Signals. In: 29th Annual International IEEE EMBS Conference, Lyon, France, August 23-26 (2007)

    Google Scholar 

  16. Bell, K.L., Ephraim, Y., Van Trees, H.L.: Robust Adaptive Beamforming under Uncertainty in Source Direction-of-Arrival. In: Proc. IEEE Signal Processing Workshop on Statistical Signal and Array Processing, USA (1996)

    Google Scholar 

  17. Bell, K.L., Van Trees, H.L.: Adaptive and Non-Adaptive Beampattern Control Using Quadratic Beampattern Constraints. In: Proc. Conference Record of the Thirty-Third Asilomar on Signals, Systems, and Computers, USA (1999)

    Google Scholar 

  18. Bell, K.L., Van Trees, H.L.: Adaptive Beamforming for Spatially Spread Sources. In: Proc. Ninth IEEE SP Workshop on Statistical Signal and Array Processing, USA (1998)

    Google Scholar 

  19. Van Veen, B., Roberts, R.: A Framework for Beamforming Structures. IEEE Transactions on Acoustics, Speech, and Signal Processing 35(4), 584–586 (1987)

    Article  Google Scholar 

  20. Van Veen, B., Roberts, R.: Partially Adaptive beamformer design via output power minimization. IEEE Transactions on Acoustics, Speech, and Signal Processing 35, 1524–1532 (1987)

    Article  Google Scholar 

  21. Lay-Ekuakille, A., Vendramin, G., Trotta, A.: Acoustic Sensing for Safety Automotive Applications. In: Proc The 2nd International Conference on Sensing Technology, New Zealand (2007)

    Google Scholar 

  22. Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imag. 13, 534–546 (2001)

    Article  Google Scholar 

  23. Alsop, D.C., Connelly, A., Duncan, J.S., Hufnagel, A., Pierpaoli, C., Rugg-Gunn, F.J.: Diffusion and perfusion MRI in epilepsy. Epilepsia 43(suppl. 1), 69–77 (2002)

    Article  Google Scholar 

  24. Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G.: Diffusion tensor MR imaging of the human brain. Radiology 201, 637–648 (1996)

    Google Scholar 

  25. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111, 209–219 (1996)

    Article  Google Scholar 

  26. Lythgoe, M.F., Busza, A.L., Calamante, F., et al.: Effects of diffusion anisotropy on lesion delineation in a rat model of cerebral ischemia. Magn. Reson. Med. 38, 662–668 (1997)

    Article  Google Scholar 

  27. Van Gelderen, P., de Vleeschouwer, M.H.M., DesPres, D., Pekar, J., Van Zijl, P.C.M., Moonen, C.T.W.: Water diffusion and acute stroke. Magn. Reson. Med. 31, 154–163 (1994)

    Article  Google Scholar 

  28. Werring, D.J., Clark, C.A., Barker, G.J., Thompson, A.J., Miller, D.H.: Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52, 1626–1632 (1999)

    Google Scholar 

  29. Lim, K.O., Hedehus, M., Moseley, M., de Crespigny, A., Sullivan, E.V., Pfefferbaum, A.: Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch. Gen. Psychiatry 56, 367–374 (1999)

    Article  Google Scholar 

  30. Wieshmann, U.C., Clark, C.A., Symms, M.R., Barker, G.J., Birnie, K.D., Shorvon, S.D.: Water diffusion in the human hippocampus in epilepsy. Magn. Reson. Imaging 17, 29–36 (1999)

    Article  Google Scholar 

  31. Rugg-Gunn, F.J., Eriksson, S.H., Symms, M.R., Barker, G.J., Duncan, J.S.: Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain 124, 627–636 (2001)

    Article  Google Scholar 

  32. Eriksson, S.H., Rugg-Gunn, F.J., Symms, M.R., Barker, G.J., Duncan, J.S.: Diffusion tensor imaging in patients with epilepsy and malformation of cortical development. Brain 124, 617–626 (2001)

    Article  Google Scholar 

  33. Arfanakis, K., Hermann, B.P., Rogers, B.P., Carew, J.D., Seidenberg, M., Meyerand, M.E.: Diffusion tensor MRI in temporal lobe epilepsy. Magn. Reson. Imag 20, 511–519 (2002)

    Article  Google Scholar 

  34. Yoo, S.Y., Chang, K.H., Song, I.C., et al.: Apparent diffusion coefficient value of the hippocampus in patients with hippocampal sclerosis and in healthy volunteers. AJNR Am. J. Neuroradiol. 23, 809–812 (2002)

    Google Scholar 

  35. Luat, A.F., Chugani, H.T.: Molecular and diffusion tensor imaging of epileptic networks. Epilepsia 49(suppl. 3), 15–22 (2008)

    Article  Google Scholar 

  36. Lay-Ekuakille, A., Vendramin, G., Trotta, A.: Beamforming-aided processing of EEG signals for analyzing epileptic seizures. International Journal of Advanced and Communications 3(I/2), 110–125 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lay-Ekuakille, A., Trotta, A., Trabacca, A., De Rinaldis, M. (2010). Advances in EEG Signal Processing for Epilepsy Detection. In: Mukhopadhyay, S.C., Lay-Ekuakille, A. (eds) Advances in Biomedical Sensing, Measurements, Instrumentation and Systems. Lecture Notes in Electrical Engineering, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05167-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05167-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05166-1

  • Online ISBN: 978-3-642-05167-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics