Advertisement

Micro-MOPSO: A Multi-Objective Particle Swarm Optimizer That Uses a Very Small Population Size

  • Juan Carlos Fuentes Cabrera
  • Carlos A. Coello Coello
Part of the Studies in Computational Intelligence book series (SCI, volume 261)

Abstract

In this chapter, we present a multi-objective evolutionary algorithm (MOEA) based on the heuristic called “particle swarm optimization” (PSO). This multi-objective particle swarm optimizer (MOPSO) is characterized for using a very small population size, which allows it to require a very low number of objective function evaluations (only 3000 per run) to produce reasonably good approximations of the Pareto front of problems of moderate dimensionality. The proposed approach first selects the leader and then selects the neighborhood for integrating the swarm. The leader selection scheme adopted is based on Pareto dominance and uses a neighbors density estimator. Additionally, the proposed approach performs a reinitialization process for preserving diversity and uses two external archives: one for storing the solutions that the algorithm finds during the search process and another for storing the final solutions obtained. Furthermore, a mutation operator is incorporated to improve the exploratory capabilities of the algorithm. The proposed approach is validated using standard test functions and performance measures reported in the specialized literature. Our results are compared with respect to those generated by the Nondominated Sorting Genetic Algorithm II (NSGA-II), which is a MOEA representative of the state-of-the-art in the area.

Keywords

Particle Swarm Optimization Particle Swarm Pareto Front Multiobjective Optimization Particle Swarm Optimization Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez-Benitez, J.E., Everson, R.M., Fieldsend, J.E.: A MOPSO algorithm based exclusively on pareto dominance concepts. In: Coello, C.A.C., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 459–473. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Andrews., P.S.: An investigation into mutation operators for particle swarm optimization. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation (CEC 2006), Vancouver, Canada, July 2006, pp. 3789–3796 (2006)Google Scholar
  3. 3.
    Bartz-Beielstein, T., Limbourg, P., Parsopoulos, K.E., Vrahatis, M.N., Mehnen, J., Schmitt, K.: Particle Swarm Optimizers for Pareto Optimization with Enhanced Archiving Techniques. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), Canberra, Australia, December 2003, vol.  3, pp. 1780–1787. IEEE Press, Los Alamitos (2003)CrossRefGoogle Scholar
  4. 4.
    Coello, C.A.C., Pulido, G.T.: Multiobjective optimization using a micro-genetic algorithm. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M., Burke, E. (eds.) Genetic and Evolutionary Computation Conference, GECCO,2001, pp. 274–282. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  5. 5.
    Coello, C.A.C., Pulido, G.T.: A Micro-Genetic Algorithm for Multiobjective Optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello, C.A.C., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 126–140. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling Multiple Objectives With Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation 8(3), 256–279 (2004)CrossRefGoogle Scholar
  7. 7.
    Coello, C.A.C., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)zbMATHGoogle Scholar
  8. 8.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  9. 9.
    Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Press, Los Alamitos (1995)Google Scholar
  10. 10.
    Engelbrecht., A.P.: Fundamentals of Computational Swarm Intelligence. John Wiley & Sons Ltd., England (2005)Google Scholar
  11. 11.
    Esquivel, S.C., Coello, C.A.C.: On the use of particle swarm optimization with multimodal functions. In: Proceedings of the 2003 IEEE Congress on Evolutionary Computation (CEC 2003), Canberra, Australia, pp. 1130–1136. IEEE Press, Los Alamitos (2003)CrossRefGoogle Scholar
  12. 12.
    Fieldsend, J.E., Singh, S.: A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and Turbulence. In: Proceedings of the 2002 U.K. Workshop on Computational Intelligence, Birmingham, UK, September 2002, pp. 37–44 (2002)Google Scholar
  13. 13.
    Fuentes Cabrera, J.C., Coello, C.A.C.: Handling constraints in particle swarm optimization using a small population size. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS, vol. 4827, pp. 41–51. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kauffmann Publishers, San Francisco (2001)Google Scholar
  15. 15.
    Knowles, J., Corne, D.: The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation, Mayflower Hotel, Washington D.C, vol. 1, pp. 98–105. IEEE Press, Los Alamitos (1999)Google Scholar
  16. 16.
    Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary function optimization. In: SPIE Proceedings: Intelligent Control and Adaptive Systems, vol. 1196, pp. 289–296 (1989)Google Scholar
  17. 17.
    Kursawe, F.: A Variant of Evolution Strategies for Vector Optimization. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  18. 18.
    Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining Convergence and Diversity in Evolutionary Multi-objective Optimization. Evolutionary Computation 10(3), 263–282 (2002)CrossRefGoogle Scholar
  19. 19.
    Li, X.: A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 37–48. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  21. 21.
    Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)zbMATHGoogle Scholar
  22. 22.
    Moore, J., Chapman, R.: Application of particle swarm to multiobjective optimization (1999)Google Scholar
  23. 23.
    Mostaghim, S., Teich, J.: The Role of ε-dominance in Multi Objective Particle Swarm Optimization Methods. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), Canberra, Australia, December 2003, vol. 3, pp. 1764–1771. IEEE Press, Los Alamitos (2003)CrossRefGoogle Scholar
  24. 24.
    Mostaghim, S., Teich, J.: Strategies for Finding Good Local Guides in Multi-objective Particle Swarm Optimization (MOPSO). In: 2003 IEEE Swarm Intelligence Symposium Proceedings, Indianapolis, Indiana, USA, April 2003, pp. 26–33. IEEE Service Center, Los Alamitos (2003)Google Scholar
  25. 25.
    Mostaghim, S., Teich, J.: Covering Pareto-optimal Fronts by Subswarms in Multi-objective Particle Swarm Optimization. In: 2004 Congress on Evolutionary Computation (CEC 2004), Portland, Oregon, USA, June 2004, vol. 2, pp. 1404–1411. IEEE Service Center, Los Alamitos (2004)Google Scholar
  26. 26.
    Sierra, M.R., Coello, C.A.C.: Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and ε-Dominance. In: Coello, C.A.C., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005)Google Scholar
  27. 27.
    Reyes-Sierra, M., Coello, C.A.C.: Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. International Journal of Computational Intelligence Research 2(3), 287–308 (2006)MathSciNetGoogle Scholar
  28. 28.
    Sierra, M.R., Coello, C.A.C.: A Study of Techniques to Improve the Efficiency of a Multi-Objective Particle Swarm Optimizer. In: Yang, Y.S., Ong, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Environments, pp. 269–296. Springer, Heidelberg (2007) ISBN 978-3-540-49772-1CrossRefGoogle Scholar
  29. 29.
    Schoeman, I., Engelbrecht, A.: Niching for Dynamic Environments using Particle Swarm Optimization. In: Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H.A., Iba, H., Chen, G.-L., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 134–141. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Schott, J.R.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts (May 1995)Google Scholar
  31. 31.
    Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of the 1998 IEEE Congress on Evolutionary Computation, pp. 69–73. IEEE Press, Los Alamitos (1998)Google Scholar
  32. 32.
    Tan, C.H., Goh, C.K., Tan, K.C., Tay, A.: A Cooperative Coevolutionary Algorithm for Multiobjective Particle Swarm Optimization. In: 2007 IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, September 2007, pp. 3180–3186. IEEE Press, Los Alamitos (2007)CrossRefGoogle Scholar
  33. 33.
    Toscano Pulido, G., Coello, C.A.C.: The Micro Genetic Algorithm 2: Towards Online Adaptation in Evolutionary Multiobjective Optimization. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 252–266. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  34. 34.
    Toscano Pulido, G., Coello, C.A.C.: Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 225–237. Springer, Heidelberg (2004)Google Scholar
  35. 35.
    Tripathi, P.K., Bandyopadhyay, S., Pal, S.K.: Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Information Sciences 177(22), 5033–5049 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective Evolutionary Algorithm Test Suites. In: Carroll, J., Haddad, H., Oppenheim, D., Bryant, B., Lamont, G.B. (eds.) Proceedings of the 1999 ACM Symposium on Applied Computing, San Antonio, Texas, pp. 351–357. ACM, New York (1999)CrossRefGoogle Scholar
  37. 37.
    Viennet, R., Fontiex, C., Marc, I.: Multicriteria Optimization Using a Genetic Algorithm for Determining a Pareto Set. International Journal of Systems Science 27(2), 255–260 (1996)zbMATHCrossRefGoogle Scholar
  38. 38.
    Xiao-hua, Z., Hong-yun, M., Li-cheng, J.: Intelligent Particle Swarm Optimization in Multiobjective Optimization. In: 2005 Congress on Evolutionary Computation, Edinburgh, Scotland, UK, September 2005, pp. 714–719. IEEE Press, Los Alamitos (2005)CrossRefGoogle Scholar
  39. 39.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Juan Carlos Fuentes Cabrera
    • 1
  • Carlos A. Coello Coello
    • 1
  1. 1.(Evolutionary Computation Group), Computer Science DepartmentCINVESTAV-IPNMéxico

Personalised recommendations