Skip to main content

Scalable P2P Overlays of Very Small Constant Degree: An Emerging Security Threat

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5873))

Abstract

In recent years peer-to-peer (P2P) technology has been adopted by Internet-based malware as a fault tolerant and scalable communication medium for self-organization and survival. It has been shown that malicious P2P networks would be nearly impossible to uncover if they operated in a stealth mode, that is, using only a small constant number of fixed overlay connections per node for communication. While overlay networks of a small constant maximal degree are generally considered to be unscalable, we argue in this paper that it is possible to design them to be scalable, efficient and robust. This is an important finding from a security point of view: we show that stealth mode P2P malware that is very difficult to discover with state-of-the-art methods is a plausible threat. In this paper we discuss algorithms and theoretical results that support the scalability of stealth mode overlays, and we present realistic simulations using an event based implementation of a proof-of-concept system. Besides P2P botnets, our results are also applicable in scenarios where relying on a large number of overlay connections per node is not feasible because of cost or the limited number of communication channels available.

M. Jelasity was supported by the Bolyai Scholarship of the Hungarian Academy of Sciences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.: Measurements and mitigation of peer-to-peer-based botnets: a case study on storm worm. In: Proceedings of the 1st USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET 2008), Berkeley, CA, USA. USENIX Association (2008)

    Google Scholar 

  2. Grizzard, J., Sharma, V., Nunnery, C., Kang, B., Dagon, D.: Peer-to-peer botnets: Overview and case study. In: Proceedings of the First USENIX Workshop on Hot Topics in Understanding Botnets, HotBots 2007 (2007)

    Google Scholar 

  3. Porras, P., Saïdi, H., Yegneswaran, V.: A foray into Conficker’s logic and rendezvous points. In: 2nd USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET 2009). USENIX (2009)

    Google Scholar 

  4. Iliofotou, M., Pappu, P., Faloutsos, M., Mitzenmacher, M., Singh, S., Varghese, G.: Network monitoring using traffic dispersion graphs (TDGs). In: Proceedings of the 7th ACM SIGCOMM conference on Internet measurement (IMC 2007), pp. 315–320. ACM, New York (2007)

    Chapter  Google Scholar 

  5. Stern, H.: Effective malware: The trade-off between size and stealth. In: 2nd USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET 2009). USENIX (2009) (invited talk)

    Google Scholar 

  6. Jelasity, M., Bilicki, V.: Towards automated detection of peer-to-peer botnets: On the limits of local approaches. In: 2nd USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET 2009). USENIX (2009), http://www.usenix.org/events/leet09/tech/

  7. Manku, G.S., Bawa, M., Raghavan, P.: Symphony: Distributed hashing in a small world. In: Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems, USITS 2003 (2003)

    Google Scholar 

  8. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation of the butterfly. In: Proceedings of the 21st ACM Symposium on Principles of Distributed Computing (PODC 2002), pp. 183–192. ACM, New York (2002)

    Google Scholar 

  9. Kong, J.S., Bridgewater, J.S.A., Roychowdhury, V.P.: A general framework for scalability and performance analysis of DHT routing systems. In: Proceedings of the International Conference on Dependable Systems and Networks (DSN 2006), Washington, DC, USA, pp. 343–354. IEEE Computer Society, Los Alamitos (2006)

    Chapter  Google Scholar 

  10. Kermarrec, A.M., Massoulié, L., Ganesh, A.J.: Probablistic reliable dissemination in large-scale systems. IEEE Transactions on Parallel and Distributed Systems 14(3), 248–258 (2003)

    Article  Google Scholar 

  11. Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: Proceedings of the 32nd ACM Symposium on Theory of Computing (STOC 2000), pp. 163–170. ACM, New York (2000)

    Chapter  Google Scholar 

  12. Manku, G.S., Naor, M., Wieder, U.: Know thy neighbor’s neighbor: the power of lookahead in randomized p2p networks. In: Proceedings of the 36th ACM Symposium on Theory of Computing (STOC 2004), pp. 54–63. ACM, New York (2004)

    Chapter  Google Scholar 

  13. Naor, M., Wieder, U.: Know thy neighbor’s neighbor: Better routing for skip-graphs and small worlds. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279, pp. 269–277. Springer, Heidelberg (2005)

    Google Scholar 

  14. Cooper, C., Frieze, A.: Hamilton cycles in random graphs and directed graphs. Random Structures and Algorithms 16(4), 369–401 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. PeerSim, http://peersim.sourceforge.net/

  16. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: Proceedings of the 6th ACM SIGCOMM conference on Internet measurement (IMC 2006), pp. 189–202. ACM, New York (2006)

    Google Scholar 

  17. Jelasity, M., Montresor, A., Babaoglu, O.: T-Man: Gossip-based fast overlay topology construction. Computer Networks 53(13), 2321–2339 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jelasity, M., Bilicki, V. (2009). Scalable P2P Overlays of Very Small Constant Degree: An Emerging Security Threat. In: Guerraoui, R., Petit, F. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2009. Lecture Notes in Computer Science, vol 5873. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05118-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05118-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05117-3

  • Online ISBN: 978-3-642-05118-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics