Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 798))

Abstract

Our fundamental FRG flow equation (7.51) for the generating functional of the irreducible vertices and the equivalent hierarchy of integro-differential equations discussed in Sects. 7.3 and 7.4 are very complicated mathematical objects which usually cannot be solved exactly.1 It is therefore important to develop reliable approximation strategies for solving these equations. Roughly, two different types of strategies have been developed. The first is based on a suitable truncation of the hierarchy of integro-differential equations for the vertices. This vertex expansion approach was pioneered by Morris (1994) and has been extensively used in the condensed matter community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baym, G., J. P. Blaizot, M. Holzmann, F. Laloë, and D. Vautherin (1999), The transition temperature of the dilute interacting Bose gas, Phys. Rev. Lett. 83, 1703.

    Article  ADS  Google Scholar 

  • Baym, G., J. P. Blaizot, M. Holzmann, F. Laloë, and D. Vautherin (2001), Bose-Einstein transition in a dilute interacting gas, Eur. Phys. J. B 24, 107.

    Article  ADS  Google Scholar 

  • Benitez, F., J.-P. Blaizot, H. Chaté, B. Delamotte, R. Méndez-Galain, and N. Wschebor (2009), Solutions of renormalization-group flow equations with full momentum dependence, Phys. Rev. E 80, 030103(R).

    Article  ADS  Google Scholar 

  • Berges, J., N. Tetradis, and C. Wetterich (2002), Non-perturbative renormalization flow in quantum field theory and statistical physics, Phys. Rep. 363, 223.

    MATH  MathSciNet  ADS  Google Scholar 

  • Blaizot, J. P., R. Méndez-Galain, and N. Wschebor (2006a), A new method to solve the non-perturbative renormalization group equations, Phys. Lett. B 632, 571.

    Article  MathSciNet  ADS  Google Scholar 

  • Blaizot, J. P., R. Méndez-Galain, and N. Wschebor (2006b), Nonperturbative renormalization group and momentum dependence of n-point functions. I, Phys. Rev. E 74, 51116.

    Article  ADS  Google Scholar 

  • Blaizot, J. P., R. Méndez-Galain, and N. Wschebor (2006c), Nonperturbative renormalization group and momentum dependence of n-point functions. II, Phys. Rev. E 74, 51117.

    Article  ADS  Google Scholar 

  • Busche, T., L. Bartosch, and P. Kopietz (2002), Dynamic scaling in the vicinity of the Luttinger liquid fixed point, J. Phys.: Condens. Matter 14, 8513.

    Article  ADS  Google Scholar 

  • Hasselmann, N., S. Ledowski, and P. Kopietz (2004), Critical behavior of weakly interacting bosons: A functional renormalization-group approach, Phys. Rev. A 70, 063621.

    Article  ADS  Google Scholar 

  • Hasselmann, N., A. Sinner, and P. Kopietz (2007), Two-parameter scaling of correlation functions near continuous phase transitions, Phys. Rev. E 76, 040101.

    Article  ADS  Google Scholar 

  • Ledowski, S., N. Hasselmann, and P. Kopietz (2004), Self-energy and critical temperature of weakly interacting bosons, Phys. Rev. A 69, 061601.

    Article  ADS  Google Scholar 

  • Litim, D. F. (2001), Optimized renormalization group flows, Phys. Rev. D 64, 105007.

    Article  ADS  Google Scholar 

  • Morris, T. R. (1994), The exact renormalisation group and approximate solutions, Int. J. Mod. Phys. A 9, 2411.

    Article  MATH  ADS  Google Scholar 

  • Pelissetto, A. and E. Vicari (2002), Critical phenomena and renormalization group theory, Phys. Rep. 368, 549.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Schütz, F. and P. Kopietz (2006), Functional renormalization group with vacuum expectation values and spontaneous symmetry breaking, J. Phys. A: Math. Gen. 39, 8205.

    Article  MATH  ADS  Google Scholar 

  • Sinner, A., N. Hasselmann, and P. Kopietz (2008), Functional renormalization group in the broken symmetry phase: Momentum dependence and two-parameter scaling of the self-energy, J. Phys.: Condens. Matter 20, 075208.

    Article  ADS  Google Scholar 

  • Sinner, A., N. Hasselmann, and P. Kopietz (2009), Spectral function and quasiparticle damping of interacting bosons in two dimensions, Phys. Rev. Lett. 102, 120601.

    Article  ADS  Google Scholar 

  • Zinn-Justin, J. (2002), Quantum Field Theory and Critical Phenomena, 4th ed., Clarendon Press, Oxford.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kopietz .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kopietz, P., Bartosch, L., Schütz, F. (2010). Vertex Expansion. In: Introduction to the Functional Renormalization Group. Lecture Notes in Physics, vol 798. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05094-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05094-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05093-0

  • Online ISBN: 978-3-642-05094-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics