Skip to main content

The Potential of Soil Beneficial Micro-Organisms for Slash-and-Burn Agriculture in the Humid Forest Zone of Sub-Saharan Africa

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 21))

Abstract

Slash-and-burn (SB) agriculture degrades soil and reduces fertility, but provides most of the food produced in tropical Africa. Soil biota can be manipulated to enhance soil nutrient availability and fertility, and to improve plant tolerance to stress and diseases. The potential of beneficial micro-organisms (BM) such as mycorrhizal fungi (MF), legume-nodulating bacteria (LNB), phosphorous-solubilizing micro-organisms (PSM), and bio-control agents for sustaining agricultural productivity was assessed in land-use systems (forest, plantation, fallow and mixed farm) from humid forest ecosystem. Microbial activity is significantly influenced by cropping practices. Inoculation of legumes by selected LNB and of garden crops, cereals, legumes, tubers, and fruit trees by arbuscular MF can increase crop yield or growth by 50%–200%. Yield improvement by BM was more pronounced in low microbial activity soils. BM has proved to be equivalent to or better than some inorganic fertilizers in Ferralsols. An integrated soil fertility management system involving organic/inorganic nutrients additions, more BM, and socio-economics is suggested as an alternative to SB agriculture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AABNF:

African Association for Biological Nitrogen Fixation

AGRA:

Alliance for a Green Revolution in Africa

AfNet-TSBF:

African Network for Soil Biology and Fertility Institute

Africa NUANCES:

Africa Nutrient Use in Animal and Cropping Systems: Efficiencies and Scales

AM:

Arbuscular mycorrhiza

AUF:

Agence Universitaire de la Francophonie

ASB:

Alternatives to Slash-and-Burn Program

BIOVEG:

Biotechnologie végétale: amélioration des plantes et sécurité alimentaire

BCA:

Bio-control agents

BM:

Beneficial micro-organisms

CARBAP:

Centre Africain de Recherche sur Bananiers et Plantains

CFU:

Colony forming units

CIAT:

International center for Tropical Agriculture

CSM-BGBD:

Conservation and sustainable management of below ground biodiversity

EM:

Ectomycorrhiza

EMBRAPA:

Empresa Brasileira de Pesquisa Agropecuária

ETH:

Swiss Federal Institute of Technology

FAO:

United Nations Food and Agriculture Organisation

ICRAF:

International Centre for Research in Agroforestry

IFDC:

International Fertilizer Development Center

IITA:

International Institute for Tropical Agriculture

IRD:

Institut Français de Recherches pour le Développement

IRAD:

Institute for Research on Agriculture for Development

ISFM:

Integrated soil fertility management

LNB:

Legume-nodulating bacteria

LSTM:

Laboratoire des Symbioses Tropicales et Méditerranéennes

MINESUP:

Ministry of Higher Education

MINEP:

Ministry of Environment and Protection of Nature

MF:

Mycorrhizal fungi

MIRCEN:

Microbial Resources Centre

NARS:

National Agricultural Research System

PGPR:

Plant growth-promoting rhizobacteria

PSM:

Phosphorus-solubilizing micro-organisms

SB:

Slash-and-burn

SOM:

Soil organic matter

SS:

Sub-Saharan

TSBF:

Tropical Soil Biology and Fertility Institute

UNESCO-BAC:

UNESCO Biotechnology Action Council

References

  • Adesina A (2007) Building sustainable rural input markets for poor farmer in Africa: approaches and lessons for the Africa Green revolution. In: International symposium on innovations as key to Green Revolution in Africa: exploring the scientific facts. AfNet-TSBF-CIAT/SOFECSA, Arusha, p 13

    Google Scholar 

  • AGRA (2008) Alliance for a green revolution in Africa. AGRA Update 1:1–8

    Google Scholar 

  • Allou K, Ahoussou N, Ake S, Diabate S, Franqueville D (2003) Comportement de clones de palmiers à huile au champ en zones de haute densité de Fusarium oxysporum f. sp. Elaeidis en Côte d’Ivoire. Agron Afr 15:29–38

    Google Scholar 

  • Ambassa-Kiki R, Tiki Manga T (1993) Biophysical and socioeconomic characterisation of the humid forest zone of Cameroon: alternatives to slash-and-burn agriculture (ASB) project. ASB, Yaoundé

    Google Scholar 

  • Anonymous (2006) Improved soil organic matter management, crop management and composting technologies for enhanced soil microbial function. http://www.tsbfsarnet.org/CSM-BGBD/CSM-BGBD-main-links/PhaseII/ex-ante%20analysis-uas.pdf. Accessed 12 Aug 2009

  • Anonymous (2007) Economic evaluation of the contribution of below ground biodiversity: Case study of biological nitrogen fixation by rhizobia. http://www.ciat.cgiar.org/tsbf_institute/pdf/report_2007/outcome.pdf. Accessed 12 Aug 2009

  • Baaru MW, Munguendi DN, Bationo A, Verchot L, Waceke W (2007) Soil microbial biomass carbon and nitrogen as influenced by organic and inorganic inputs at Kabete, Kenya. In: Bationo A, Waswa B, Kihara J, Kimetu J (eds) Advances in integrated soil fertility management in sub-Saharan Africa: Challenges and opportunities. Springer, Berlin, pp 827–832

    Chapter  Google Scholar 

  • Bationo A et al (2004) The African network for soil biology and fertility: new challenges and opportunities. In: Bationo A (ed) Managing nutrient cycles to sustain soil fertility in sub-Saharan Africa. Academy Science Publications, Nairobi, pp 1–23

    Google Scholar 

  • Bethlenfalvay GJ, Linderman RG (1992) Mycorrhiza in sustainable agriculture. American Society of Agronomy, Madison

    Google Scholar 

  • Bignell DE et al (2005) Belowground biodiversity assessment: developing a key functional group approach in best-bet alternatives to slash and burn. In: Palm C, Vosti SA, Sanchez PA, Ericksen PJ (eds) Slash-and-burn agriculture, the search for alternatives. Columbia University Press, New York, pp 119–142

    Google Scholar 

  • Brown S, Anderson JM, Woomer PL, Swift MJ, Barrios E (1994) Soil biological processes in tropical ecosystems. In: Woomer PL, Swift MJ (eds) The biological management of tropical soil fertility. Wiley, Chichester, pp 15–46

    Google Scholar 

  • Carsky RJ, Sanginga N, Schulz S, Vanlauwe B (2003) Promising practices for sustainable intensified systems in the Savannah zone of West Africa. In: Jamin JY, Seiny Boukar L, Floret C (eds) Savanes africaines: des espaces en mutation, des acteurs face à de nouveaux défis. Actes de colloque, CIRAD, Montpellier, France

    Google Scholar 

  • Chemining’wa GN, Muthomi JW, Theuri SWM (2007) Effect of rhizobia inoculation and starter-N on nodulation, shoot biomass and yield of grain legumes. Asian J Plant Sci 6:1113–1118

    Article  Google Scholar 

  • Dakora F, Keya SO (1997) Contribution of legume nitrogen fixation to sustainable agriculture in sub-Saharan Africa. Soil Biol Biochem 29:809–817

    Article  CAS  Google Scholar 

  • Danso SKA (2004) Managing soil genetic resources for enhanced biodiversity. International symposium on soil biology and fertility, AfNet-TSBF-CIAT, 17–21 May, Yaoundé

    Google Scholar 

  • Date RA (2000) Inoculated legumes in cropping systems of the tropics. Field Crops Res 65:123–136

    Article  Google Scholar 

  • Diabate M, Munive A, de Faria SM, Ba A, Dreyfus B, Galiana A (2005) Occurrence of nodulation in unexplored leguminous trees native to the West African tropical forest and inoculation response of native species useful in reforestation. New Phytol 166:231–239

    Article  PubMed  Google Scholar 

  • Elkan GH (1992) Biological nitrogen fixation systems in tropical ecosystems: an overview. In: Mulongoy K, Gueye M, Spencer DSC (eds) Biological nitrogen fixation and sustainability of tropical agriculture. Wiley, Chichester, pp 27–40

    Google Scholar 

  • FAO (1995) FAO fertilizer yearbook 1994, vol 44. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2001) Soil fertility management in support of food security in sub-Saharan Africa. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2007) Biodiversity of micro-organisms and insects for food and agriculture: status and needs. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fankem H (2007) Diversity and potentials of phosphate solubilizing microorganisms associated with palm-tree (Elaeis guineensis Jacq.) rhizosphere in Cameroon. PhD thesis, University of Yaounde I, Cameroon

    Google Scholar 

  • Fankem H, Nwaga D, Deubel A, Dieng L, Merbach W, Etoa F-X (2006) Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. Afr J Biotechnol 5:2450–2460

    CAS  Google Scholar 

  • Fankem H, Ngo Nkot L, Deubel A, Quinn J, Merbach W, Etoa F-X, Nwaga D (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. Afr J Microbiol Res 2:171–178

    Google Scholar 

  • Finlay RD (2004) Mycorrhizal fungi and their multifunctional roles. Mycologist 18:91–96

    Article  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems. CABI, Wallingford

    Book  Google Scholar 

  • Gockowski J et al (2005) The forest margins of Cameroon. In: Palm C, Vosti SA, Sanchez PA, Ericksen PJ (eds) Slash-and-burn agriculture, the search for alternatives. Columbia University Press, New York, pp 305–331

    Google Scholar 

  • Gueye M (1992) Effect of Rhizobium and Rhizobium-Glomus inoculation on nitrogen fixation in Bambara groundnut. In: Mulongoy K, Gueye M, Spencer DSC (eds) Biological nitrogen fixation and sustainability of tropical agriculture. Wiley, Chichester, pp 283–287

    Google Scholar 

  • Guichuru MP et al (2003) Soil fertility management in the lowland humid forest zone. In: Gichuru MP et al (eds) Soil fertility management in Africa: a regional perspective. Academy Science Publishers, Nairobi, pp 147–186

    Google Scholar 

  • Hartnett DC, Potgieter AF, Wilson GWT (2004) Fire effects on mycorrhizal symbiosis and root system architecture in southern African savanna grasses. Afr J Ecol 42:328–337

    Article  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 6:641–655

    Article  Google Scholar 

  • Hijri I, Sykorova Z, Oehl F, Ineichen K, Mader P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Molec Ecol 15:2277–2289

    Article  CAS  Google Scholar 

  • ICRAF (2000) Alternatives to slash and burn programme. ICRAF, Nairobi

    Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Article  Google Scholar 

  • Jefwa JM, Coyne D, Gaidasova S, Elsen A, van Asten P, Vanlauwe B (2008) Benefits and potential use of arbuscular mycorrhizal fungi in banana and plantain systems in Africa. http://www.banana2008.com/com/details/Production.pdf. Accessed 12 Aug 2009

  • Jemo M, Nolte C, Nwaga D (2007) Biomass production, N and P uptake of Mucuna after bradyrhizobia and arbuscular mycorrhizal fungi inoculation, and P-application on acid soil of southern Cameroon. In: Bationo A, Waswa B, Kihara J, Kimetu J (eds) Advances in integrated soil fertility management in Sub Saharan Africa: challenges and opportunities. Springer, Berlin, pp 277–281

    Google Scholar 

  • Kanmegne J (2004) Slash and burn agriculture in the humid forest zone of southern Cameroon: soil quality dynamics, improved fallow management and farmers’ perceptions. PhD Thesis, Wageningen University, The Netherlands

    Google Scholar 

  • Kates RW, Dasgupta P (2007) African poverty: a grand challenge for sustainability science. Proc Natl Acad Sci U S A 104:16747–16750

    Article  CAS  PubMed  Google Scholar 

  • Kimou A, Zengbet M (1994) Facteurs limitant la fixation de N2 chez deux espèces de légumineuses à graines (Glycine max et Vigna unguiculata) en zone tropicale humide de Côte d’Ivoire. In: Sadiki M, Hilalé A (eds) Recent developments in biological nitrogen fixation research in Africa. IAV, Rabat, pp 381–386

    Google Scholar 

  • Koala S, Sims JR, El-Actar H, El-Halfawi M (1988) Phosphorus deficiency in the semi-arid tropics and implications for grain legume production. IRDC, Kluwer, Dordrecht

    Google Scholar 

  • Kotto-Same J et al (2000) Alternatives to Slash-and-Burn: summary report and synthesis of phase II in Cameroon. ASB-ICRAF, Nairobi

    Google Scholar 

  • Mafongoya PL, Giller KE, Odee D, Gathumbi S, Ndufa SK, Sitompul SM (2004) Benefiting from N2-fixation and managing rhizobia. In: van Noordwijk M, Cadish G, Ong CK (eds) Below-ground interactions in tropical agrosystems. CAB International, Wallingford, pp 227–242

    Google Scholar 

  • Mahendra MS, Günther F, van Velthuizen H (2008) Food security and sustainable agriculture: the challenge of climate change in sub-Saharan Africa. International Institute for Applied System Analysis, Laxenburg

    Google Scholar 

  • Mandimba GR (1997) L’inoculation du soja: une arme contre la faim pour les pays en développement. 6e JS du réseau biotechnologies végétales AUPELF/UREF, Orsay, p 180

    Google Scholar 

  • Mandou MMS, Banlock DR, Nwaga D, Foko J (2002) Effet du molybdène et des rhizobia sur la nutrition azotée et le rendement de l’arachide (Arachis hypogaea L.) en champ: étude préliminaire. Biosci Proc 9:83–89

    Google Scholar 

  • Mangan SA, Eom AH, Adler GH, Yavitt JB, Herre EA (2004) Diversity of arbuscular mycorrhizal fungi across a fragmented forest in Panama: insular spore communities differ from mainland communities. Oecologia 141:687–700

    Article  PubMed  Google Scholar 

  • Mathimaran N, Ruh R, Vullioud P, Frossard E, Jansa J (2005) Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza 16:61–66

    Article  CAS  PubMed  Google Scholar 

  • Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan Ferralsol. Agric Ecosyst Environ 119:22–32

    Article  Google Scholar 

  • Moreira FMS, Siqueira JO, Brussaard L (2006) Soil organisms in tropical ecosystems: a key role for Brazil in the global quest for the conservation and sustainable use of biodiversity. In: Moreira FMS, Siqueira JO, Brussard L (eds) Soil biodiversity in Amazonian and other Brazilian ecosystems. CAB International, Wallingford, pp 1–12

    Google Scholar 

  • Morgan S (2005) Shifting cultivation. http://www.clas.ufl.edu/users/morgans/Lecture_March.29.pdf. Accessed 12 Aug 2009

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chimica Acta 27:31–36

    Google Scholar 

  • Nandwa SM (2003) Perspectives on soil fertility in Africa. In: Gichuru MP et al (eds) Soil fertility management in Africa: a regional perspective. Academy Science Publishers, Nairobi, pp 1–50

    Google Scholar 

  • Ngakou A (2007) Potentials of rhizobia, arbuscular mycorrhizal fungi and Metarhizium anisopliae in managing Megalothrips sjostedti and improving cowpea production in Cameroon. PhD thesis, University of Buea, Cameroon

    Google Scholar 

  • Ngakou A, Nwaga D, Ntonifor NN, Tamò M, Nebane CLN, Parh IA (2007) Contribution of arbuscular mycorrhizal fungi (AMF), rhizobia and Metarhizium anisopliae to cowpea production in Cameroon. Int J Agric Res 2:754–764

    Article  Google Scholar 

  • Ngakou A, Tamò M, Parh IA, Nwaga D, Ntonifor NN, Korie S, Nebane CLN (2008) Management of cowpea flower thrips, Megalurothrips sjostedti (Thysanoptera, Thripidae), in Cameroon. Crop Prot 27:481–488

    Article  CAS  Google Scholar 

  • Ngonkeu MEL (2003) Biodiversité et potentiel des champignons mycorhiziens à arbuscules de quelques zones agro-écologiques du Cameroun. Thèse de Doctorat 3e Cycle, Université of Yaoundé I, Cameroon

    Google Scholar 

  • Ngo Nkot (2009) L’acidité du sol comme facteur limitant la fixation de l’azote atmosphérique chez l’arachide (Arachis hypogaea L.) en zone de forêt dense humide. PhD thesis, University of Yaoundé I, Cameroon

    Google Scholar 

  • Ngo Nkot L, Krasova-Wade T, Etoa FX, Sylla SN, Nwaga D (2008) Genetic diversity of rhizobia nodulating Arachis hypogaea L. in diverse land use systems of humid forest zone in Cameroon. Appl Soil Ecol 40:411–416

    Article  Google Scholar 

  • Niane-Badiane A, Ganry F, Jacquin F (1998) Assessment of microbial biomass in a ferrugineous tropical soil of the central northern part of Senegal. In: Congrès mondial des sciences du sol, vol 16, CIRAD, Montpellier, pp 1–7

    Google Scholar 

  • Nounamo L, Yemefack M (2001) Farming systems in the evergreen forest of southern Cameroon: shifting cultivation and soil degradation. Tropenbos-Cameroon Documents 8. Tropenbos-Cameroon Programme and The Tropenbos Foundation, Wageningen

    Google Scholar 

  • Nwaga D (1988) Intérêt du polymorphisme protéique et enzymatique pour la caractérisation des Pythiacées (Phytophthora et Pythium) et de leur interaction avec le tabac et le haricot. PhD Thesis, University of Rennes I, France

    Google Scholar 

  • Nwaga D (1997) Production pilote de biofertilisants rhizobien et mycorhizien au Cameroun: intérêt et contraintes. Cam J Biol Biochem Sci 7:16–23

    Google Scholar 

  • Nwaga D (2001) Why should we develop a programme for biological agriculture to improve food production and soil fertility by a low input technology. Biosci Proc 8:13–33

    Google Scholar 

  • Nwaga D, Ngo Nkot L (1998) Tolérance à l’acidité in vitro de rhizobia isolés du niébé (Vigna unguiculata) en comparaison avec Bradyrhizobium japonicum. Cahiers Agricultures 7:407–410

    Google Scholar 

  • Nwaga D, Ngonkeu MEL, Oyong MM, Ngakou A, Abelong M-P, Foko J (2000) Soil beneficial micro-organisms and sustainable agricultural production in Cameroon: current research and perspectives. In: UNESCO-TSBF (ed) The biology and fertility of tropical soils, TSBF Report 1998, Nairobi, pp 62–65

    Google Scholar 

  • Nwaga D, Bindzi M, Biye H, Atangana Eteme R, Ngonkeu MEL (2003) Diversité des champignons mycorhiziens arbusculaires et biomasse microbienne des sols des zones de forêt humide du sud-Cameroun: effet des systèmes d’utilisation des terres. Ann Fac Sci Univ Yaoundé I 35:14–23

    Google Scholar 

  • Nwaga D, The C, Ambassa-Kiki R, Ngonkeu Mangapché EL, Tchiegang-Megueni C (2004) Selection of arbuscular mycorrhizal fungi for inoculating maize and sorghum, grown in oxisol/ultisol and vertisol in Cameroon. In: Bationo A (ed) Managing nutrient cycles to sustain soil fertility in sub-Saharan Africa. Academy Science Publishers and TSBF Institute of CIAT, Nairobi, pp 467–486

    Google Scholar 

  • Nwaga D, Hamon S, Djiéto Lordon C, Engelmann F (2007a) Biotechnologies et maîtrise des intrants agricoles en Afrique centrale. Réseau ‘BIOVEG’, AUF/IRD/Université de Yaoundé I/IRAD, Yaoundé, Cameroon. http://www.bioveg.auf.org

  • Nwaga D, Fankem H, Essono Obougou G, Ngo Nkot L, Randrianangaly JS (2007b) Pseudomonads and symbiotic micro-organisms as biocontrol agents against fungal disease caused by Pythium aphanidermatum. Afr J Biotechnol 6:190–197

    Google Scholar 

  • Nwaga D, Tenkouano A, Tomekpe K, Fogain R, Kinfack DM, Tsané G, Yombo O (2009) Multi-functional properties of mycorrhizal fungi for crop production: the case study of banana development and drought tolerance. In: Bationo A et al (eds) Innovations as key to Green Revolution in Africa: exploring the scientific facts. Springer, Berlin

    Google Scholar 

  • Nyobe T, Nwaga D (2008) Country report for Cameroon. Soil health program: alliance for a Green Revolution in Africa (AGRA), Accra, Ghana

    Google Scholar 

  • Obaton M (1992) Facteurs pédoclimatiques limitant la fixation biologique de l’azote chez les légumineuses. In: Mulongoy K, Gueye M, Spencer DSC (eds) Biological nitrogen fixation and sustainability of tropical agriculture. Wiley, Chichester, pp 57–66

    Google Scholar 

  • Oberson A, Bünemann EK, Friesen DK, Rao IM, Smithson PC, Turner BL, Frossard E (2006) Improving phosphorus fertility in tropical soils through biological interventions. In: Uphoff N et al (eds) Biological approaches to sustainable soil systems. CRC, Boca Raton, FL, pp 531–546

    Chapter  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris E, Boller T, Wiemken A (2004) Community structure of arbuscular mycorrhizal fungal communities at different soil depths in extensively and intensively managed agroecosystems. New Phytol 106:273–283

    Article  Google Scholar 

  • Oloke JK, Odeyemi O (1988) Effect of some Nigerian Bradyrhizobium inoculants on the performance of three cowpea cultivars (Vigna unguiculata L. Walp.) in two field plots. Biol Fertil Soils 6:178–182

    Article  Google Scholar 

  • Opik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungi communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  • Pimentel D, Wilson C, Mc Cullum C, Huang R, Dwen P, Flack J, Tran Q, Saltman T, Cliff B (1997) Economic and environmental benefits of biodiversity. Bioscience 47:747–757

    Article  Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40

    Google Scholar 

  • Reddy BV, Chinnappa AS, Gopal V, Shankar S (2005) Economic valuation of production impact of legume nodulating bacteria on groundnut production. National workshop on conservation and sustainable management of belowground biodiversity. KFRI, Peechi

    Google Scholar 

  • Sanchez PA (2002) Soil fertility and hunger in Africa. Science 295:219–220

    Article  Google Scholar 

  • Sanchez PA et al (1997) Soil fertility replenishment in Africa: an investment in natural resource capital. In: Buresh RJ, Sanchez PA, Calhoun F (eds) Replenishing soil fertility in Africa. Soil Science Society of America, Madison, WI, p 1 Special publication No. 51

    Google Scholar 

  • Sanginga N, Okogun JA, Vanlauwe B, Diels J, Carsky RJ, Dashield K (2001) Contribution of promiscuous soybeans in maize-based cropping systems. In: Tian G, Ishida F, Keatinge JDH (eds) Soil fertility maintenance in West Africa. Soil Science Society of America, Madison, WI, pp 157–177 Special publication No. 58

    Google Scholar 

  • Sow HA, Diop TA, Ndiaye F, Manga AGB (2008) Influence de la mycorhization arbusculaire sur la culture intensive de l’oignon (Allium cepa L) au Sénégal. J Sci 8:1–6

    Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Botanic Gardens, Kew

    Google Scholar 

  • Swift MJ (1998) Towards the second paradigm: integrated biological management of soil. In: Siqueira JO et al (eds) Soil fertility, soil biology and plant nutrition interrelationships. SBCS/UFLA/DCS, Lavras, pp 11–24

    Google Scholar 

  • Swift MJ, Shepherd KD (2007) Saving Africa’s soils: Science and technology for improved soil management in Africa. Word Agroforestry Centre, Nairobi

    Google Scholar 

  • Swift MJ, Bignell DE, Moreira FMS, Huising EJ (2008) The inventory of soil biological diversity: concepts and general guidelines. In: Moreira FMS, Huising J, Bignell DE (eds) A handbook of tropical soil biology: Sampling and characterization of below-ground biodiversity. Earthscan, London, pp 1–16

    Google Scholar 

  • Tchabi A, Coyne D, Hountondji F, Lawouin L, Wiemken A, Oehl F (2008) Arbuscular mycorrhizal fungal communities in sub-Saharan savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza 18:181–195

    Article  PubMed  Google Scholar 

  • Thies JE, Singleton PW, Bohlool BB (1991) Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field grown legumes. Appl Environ Microbiol 57:19–28

    CAS  PubMed  Google Scholar 

  • TSBF (1999) Integrating soils, systems and society strategic directions for TSBF. TSBF, Nairobi

    Google Scholar 

  • UNEP (1995) Global biodiversity assessment. United Nation Environment Programme, Nairobi

    Google Scholar 

  • Van Straaten P (2007) The geological basis of farming in sub-Saharan Africa. In: Bationo A et al (eds) Innovations as key to Green Revolution in Africa: exploring the scientific facts. AfNet-TSBF CIAT/SOFECSA, Arusha

    Google Scholar 

  • Woomer PL, Karanja NK (1996) The Rhizobium ecology network of East and South Africa (RENESA). TSBF, UNESCO, Nairobi

    Google Scholar 

Download references

Acknowledgments

We thank AfNet-TSBF Institute of CIAT (Nairobi, Kenya), AfricaNUANCES Project (Wageningen, Netherlands), AUF “Bioveg” Network (Paris, France), AGRA Soil Health Project (Accra, Ghana), students and colleagues in Cameroon (CARBAP, ICRAF, IITA-Nkolbisson, IRAD, IRD-Yaoundé, MINEP, MINESUP, Universities of Yaoundé I, Ngaoundéré, Buea, Douala, Dschang) and IITA (Ibadan, Nigeria and Cotonou, Benin), University of Cheik Anta Diop (Dakar, Senegal), EMBRAPA (Seropedica, Brazil), ETH Institute of Plant Science (Zurich, Switzerland), LSTM IRD (Montpellier, France), Universities of Dundee and York (Plant Biology Dept, UK), Institute of Soil Science and Plant Nutrition, Martin-Luther University (Halle-Wittenberg, Germany) for their collaboration, work and networking. We also thank UNESCO Biotechnology Action Plan for a memorable training scholarship in Brazil (EMBRAPA-RJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieudonné Nwaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nwaga, D., Jansa, J., Angue, M.A., Frossard, E. (2010). The Potential of Soil Beneficial Micro-Organisms for Slash-and-Burn Agriculture in the Humid Forest Zone of Sub-Saharan Africa. In: Dion, P. (eds) Soil Biology and Agriculture in the Tropics. Soil Biology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05076-3_5

Download citation

Publish with us

Policies and ethics