Skip to main content

Cell Envelopes of Crenarchaeota and Nanoarchaeota

  • Chapter
  • First Online:
Prokaryotic Cell Wall Compounds

Abstract

The Crenarchaeota are a phylogenetically distinct group, based on sequence comparisons of abundant macromolecules (rRNA; many proteins). Most of the species, which are cultivated and characterized ultrastructurally, have distinct features in common: a lipid membrane, a quasi-periplasmic space, and an S-layer on top, as the outermost cell envelope component. The characteristics of the cell envelope, as far as are known today, are summarized in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akca E, Claus H, Schultz N, Karbach G, Schlott B, Debaerdemaeker T, Declercq JP, König H (2002) Genes and derived amino acid sequences of S-layer proteins from mesophilic, thermophilic and extremely thermophilic methanococci. Extremophiles 6:351–358

    Article  CAS  PubMed  Google Scholar 

  • Baumeister W, Lembcke G (1992) Structural features of archaebacterial cell envelopes. J Bioenerg Biomembr 24:567–575

    Article  CAS  PubMed  Google Scholar 

  • Baumeister W, Wildhaber I, Phipps BM (1989) Principles and organization in eubacterial and archaebacterial surface proteins. Can J Microbiol 35:215–227

    Article  CAS  PubMed  Google Scholar 

  • Baumeister W, Santarius U, Volker S, Dürr R, Lemcke G, Engelhardt H (1990) The surface protein of Hyperthermus butylicus: three dimensional structure and comparison with other archaebacterial surface proteins. Syst Appl Microbiol 13:105–111

    CAS  Google Scholar 

  • Baumeister W, Volker S, Santarius U (1991) The three-dimensional structure of the surface layer protein of Acidianus brierleyi determined by electron crystallography. Syst Appl Microbiol 14:103–110

    CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 16:783–795

    Article  Google Scholar 

  • Beveridge TJ, Graham LL (1991) Surface layers of bacteria. Microbiol Rev 55:684–705

    CAS  PubMed  Google Scholar 

  • Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov. represents a novel group of Archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21

    Article  PubMed  Google Scholar 

  • Boot HJ, Pouwels PH (1996) Expression, secretion and antigenic variation of bacterial S-layer proteins. Mol Microbiol 21:1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Boucher Y (2007) Lipids: biosynthesis, function, and evolution. In: Cavicchioli R (ed) Archaea: molecular and cellular biology. ASM Press, Washington, USA, pp 341–353

    Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Rev Microbiol 6:245–252

    Article  CAS  Google Scholar 

  • Bröckl G, Behr M, Fabry S, Hensel R, Kaudewitz H, Biendl E, König H (1991) Analysis and nucleotide sequence of the genes encoding the surface-layer glycoproteins of the hyperthermophilic methanogens Methanothermus fervidus and Methanothermus sociabilis. Eur J Biochem 199:147–152

    Article  PubMed  Google Scholar 

  • Burggraf S, Huber H, Stetter KO (1997) Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data. Int J Syst Bacteriol 47:657–660

    Article  CAS  PubMed  Google Scholar 

  • Burghardt T, Näther DJ, Junglas B, Huber H, Rachel R (2007) The dominating outer membrane protein of the hyperthermopilic Archaeum Ignicoccus hospitalis: a novel pore-forming complex. Mol Microbiol 63:166–176

    Article  CAS  PubMed  Google Scholar 

  • Burghardt T, Saller M, Gürster S, Müller D, Meyer C, Jahn U, Hochmuth E, Deutzmann R, Siedler F, Babinger P, Wirth R, Huber H, Rachel R (2008) Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins. Arch Microbiol 190:379–394

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Brugger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk H-P, Garrett RA (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999

    Article  CAS  PubMed  Google Scholar 

  • Claus H, Akca E, Schultz N, Karbach G, Schlott B, Debaerdemaeker T, Declercq JP, König H (2001) Surface (glyco-)proteins: primary structure and crystallization under microgravity conditions. In: Proccedings of the first European workshop on exo-/astro-biology, Frascati, 21–23 May 2001, ESA SP-496, August 2001; ISBN No 92-9092-806-9, pp 806–809

    Google Scholar 

  • Claus H, Akca E, Debaerdemaeker T, Evrard C, Declercq JP, König H (2002) Primary structure of selected archaeal mesophilic and extremely thermophilic outer surface layer proteins. Syst Appl Microbiol 25:3–12

    Article  CAS  PubMed  Google Scholar 

  • Claus H, Akca E, Debaerdemaeker T, Evrard C, Declercq JP, Harris JR, Schlott B, König H (2005) Molecular organization of selected prokaryotic S-layer proteins. Can J Microbiol 51:731–743

    Article  CAS  PubMed  Google Scholar 

  • Deatherage JF, Taylor KA, Amos LA (1983) Three-dimensional arrangement of the cell wall protein of Sulfolobus acidocaldarius. J Mol Biol 167:823–852

    Article  CAS  PubMed  Google Scholar 

  • Debaerdemaeker T, Evrard C, Declercq JP, Claus H, Akca E, König H (2002) The first crystallization of the outer surface (S-layer) glycoprotein of the mesophilic bacterium Bacillus sphaericus and the hyperthermophilic archaeon Methanothermus fervidus. In: Proccedings of the 2nd European workshop on exo/astro-biology, Graz, Austria, 16–19 Sept 2002, ESA SP-518, November 2002; ISBN No 92-9092-828-X, pp 411–412

    Google Scholar 

  • Drenth J (2007) Principles of protein X-ray crystallography, 3rd edn. Springer, New York

    Google Scholar 

  • Dürr R, Hegerl R, Volker S, Santarius U, Baumeister W (1991) Three-dimensional reconstruction of the surface protein of Pyrodictium brockii: comparing two image processing strategies. J Struct Biol 106:181–190

    Article  Google Scholar 

  • Eichler J (2001) Post-translational modification of the S-layer glycoprotein occurs following translocation across the plasma membrane of the haloarchaeon Haloferax volcanii. Eur J Biochem 268:4366–4373

    Article  CAS  PubMed  Google Scholar 

  • Eichler J (2003) Facing extremes: archaeal surface-layer (glyco)proteins. Microbiology 149:3347–3351

    Article  CAS  PubMed  Google Scholar 

  • Elkins JG, Podar M, Graham DE, Makarova KS et al (2008) A korarchaeal genome reveals insights into the evolution of the Archaea. PNAS 105:8102–8107

    Article  CAS  PubMed  Google Scholar 

  • Evrard C, Declercq JP, Debaerdemaeker T, König H (1999) The first successful crystallization of a prokaryotic extremely thermophilic outer surface layer glycoprotein. Z Kristallogr 214:427–429

    Article  CAS  Google Scholar 

  • Fernandez LA, Berenguer J (2000) Secretion and assembly of regular surface structures in gram-negative bacteria. FEMS Microbiol Rev 24:21–44

    Article  CAS  PubMed  Google Scholar 

  • Fitz-Gibbon ST, Ladner H, Kim U-J, Stetter KO, Simon MI, Miller JH (2002) Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci USA 99:984–989

    Article  CAS  PubMed  Google Scholar 

  • Fröls S, Gordon PMK, Panlilio MA, Duggin IG, Bell SD, Sensen CW, Schleper C (2007) Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage. J Bacteriol 189:8708–8718

    Article  PubMed  Google Scholar 

  • Fuchs T, Huber H, Teiner K, Burggraf S, Stetter KO (1995) Metallosphaera prunae, sp.nov., a novel metal-moblizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560–566

    Google Scholar 

  • Glaeser RM, Downing K, DeRosier D (2007) Electron crystallography of biological macromolecules. Oxford University Press, New York

    Google Scholar 

  • Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, Manoson MF, Poole RJ, Date T, Oshima T, Konishi J, Denda K, Yoshida M (1989) Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86:6661–6665

    Article  CAS  PubMed  Google Scholar 

  • Grogan DW (1996) Organization and interactions of cell envelope proteins of the extreme thermoacidophile Sulfolobus acidocaldarius. Can J Microbiol 42:1163–1171

    Article  CAS  Google Scholar 

  • Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, Preston C, de la Torre J, Richardson PM, DeLong EF (2006) Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA 103:18296–18301

    Article  CAS  PubMed  Google Scholar 

  • Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA 105:2134–2139

    Article  CAS  PubMed  Google Scholar 

  • Hegerl R, Baumeister W (1988) Correlation averaging of a badly distorted lattice: the surface protein of Pyrodictium occultum. J Electron Microsc Tech 9:413–419

    Article  CAS  PubMed  Google Scholar 

  • Horn C, Paulmann B, Kerlen B, Junker N, Huber H (1999) In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope. J Bacteriol 181:5114–5118

    CAS  PubMed  Google Scholar 

  • Houwink AL (1956) Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscope study. J Gen Microbiol 15:146–150

    CAS  PubMed  Google Scholar 

  • Huber H (2006) Crenarchaeota. Encyclopedia of life sciences. Wiley, New York, p 1–11. doi: 10.1038/npg.els.0004242

    Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  CAS  PubMed  Google Scholar 

  • Huber H, Hohn MJ, Stetter KO, Rachel R (2003) The phylum Nanoarchaeota: present knowledge and future perspectives of a unique form of life. Res Microbiol 154:165–171

    Article  CAS  PubMed  Google Scholar 

  • Iwabe N, Kuma K-I, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359

    Article  CAS  PubMed  Google Scholar 

  • Jahn U, Summons R, Sturt H, Grossjean E, Huber H (2004) Composition and source of the lipids of Nanoarchaeum equitans and their origin in the cytoplasmic membrane of its host Ignicoccus sp. KIN4I. Arch Microbiol 182:404–413

    Article  CAS  PubMed  Google Scholar 

  • Junglas B, Briegel A, Burghardt T, Walther P, Huber H, Rachel R (2008) Ignicoccus hospitalis and Nanoarchaeum equitans: Ultrastructure, cell–cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells and by electron cryotomography. Arch Microbiol 190:395–408

    Article  CAS  PubMed  Google Scholar 

  • Kandler O, Hippe H (1977) Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch Microbiol 113:57–60

    Article  CAS  PubMed  Google Scholar 

  • Kandler O, König H (1978) Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch Microbiol 118:141–152

    Article  CAS  PubMed  Google Scholar 

  • Kandler O, König H (1993) Cell envelopes of archaea: structure and chemistry. In: Kates M et al (eds) The biochemistry of Archaea (Archaebacteria). Elsevier, Amsterdam, pp 223–259

    Chapter  Google Scholar 

  • Kärcher U, Schröder H, Haslinger E, Allmeier G, Schreiner R, Wieland F, Haselbeck A, König H (1993) Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus. J Biol Chem 268:26821–26826

    PubMed  Google Scholar 

  • Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A et al (1999) Complete genome sequence of an aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6:83–101

    Article  CAS  PubMed  Google Scholar 

  • Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Otsuka R, Nakazawa H, Takamiya M, Kato Y, Yoshizawa T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Masuda S, Yanagii M, Nishimura M, Yamagishi A, Oshima T, Kikuchi H (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8:123–140

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi A, Sagami H, Ogura K (1999) Evidence for the covalent attachment of diphytanylglycerol phosphate to the cell-surface glycoprotein of Halobacterium halobium. J Biol Chem 274:18011–18016

    Article  CAS  PubMed  Google Scholar 

  • König H, Stetter KO (1986) Studies on archaebacterial S-layers. Syst Appl Microbiol 7:300–309

    Google Scholar 

  • König H, Messner P, Stetter KO (1988) The fine structure of the fibers of Pyrodictium occultum. FEMS Microbiol Lett 49:207–212

    Article  Google Scholar 

  • König H, Rachel R, Claus H (2007) Proteinaceous surface layers of archaea: ultrastructure and biochemistry. In: Cavicchioli R (ed) Archaea: molecular and cellular biology. ASM Press, Washington, USA, pp 315–340

    Google Scholar 

  • Könnecke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  Google Scholar 

  • Konrad Z, Eichler J (2002) Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the S-layer glycoprotein of Haloferax volcanii follows protein translocation. Biochem J 366:959–964

    CAS  PubMed  Google Scholar 

  • Lechner J, Sumper M (1987) The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria. J Biol Chem 262:9724–9729

    CAS  PubMed  Google Scholar 

  • Lechner J, Wieland F (1989) Structure and biosynthesis of prokaryotic glycoproteins. Annu Rev Biochem 58:173–194

    Article  CAS  PubMed  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  • Lembcke G, Dürr R, Hegerl R, Baumeister W (1990) Image analysis and processing of an imperfect two-dimensional crystal. The surface layer of Sulfolobus acidocaldarius reinvestigated. J Microsc 161:263–278

    Google Scholar 

  • Lembcke G, Baumeister W, Beckmann E, Zemlin F (1993) Cryo-electron microscopy of the surface protein of Sulfolobus shibatae. Ultramicroscopy 49:397–406

    Article  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L et al (2004) ARB: a software environment for sequence data. Nucleic Acid Res 32:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Mayr J, Lupas A, Kellermann J, Eckerskorn C, Baumeister W, Peters J (1996) A hyperthermostable protease of the subtilisin family bound to the surface layer of the archaeon Staphylothermus marinus. Curr Biol 6:739–749

    Article  CAS  PubMed  Google Scholar 

  • Mescher MF, Strominger JL (1976a) Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium. Proc Natl Acad Sci USA 73:2687–2691

    Article  CAS  PubMed  Google Scholar 

  • Mescher MF, Strominger JL (1976b) Purification characterisation of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium. J Biol Chem 251:2005–2014

    CAS  PubMed  Google Scholar 

  • Messner P, Schäffer C (2003) Prokaryotic glycoproteins. In: Herz H, Falk H, Kirby GW (eds) Progress in the chemistry of organic natural products. Springer, Heidelberg, pp 51–124

    Google Scholar 

  • Messner P, Sleytr UB (1992) Crystalline bacterial cell-surface layers. Adv Microbial Physiol 33:213–274

    Article  CAS  Google Scholar 

  • Messner P, Pum D, Sara M, Stetter KO, Sleytr UB (1986) Ultrastructure of the cell envelope of the Archaebacteria Thermoproteus tenax und Thermoproteus neutrophilus. J Bacteriol 166:1046–1054

    CAS  PubMed  Google Scholar 

  • Michel H, Neugebauer D-C, Oesterhelt D (1980) The 2-d crystalline cell wall of Sulfolobus acidocaldarius: Structure, solubilization, and reassembly. In: Baumeister W, VogelI W (eds) Electron microscopy at molecular dimensions. Springer, Berlin, pp 27–35

    Google Scholar 

  • Näther DJ, Rachel R (2004) The outer membrane of the hyperthermophilic archaeon Ignicoccus: dynamics, ultrastructure and composition. Biochem Soc Trans 32:199–203

    Article  PubMed  Google Scholar 

  • Nickell S, Hegerl R, Baumeister W, Rachel R (2003) Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J Struct Biol 141:34–42

    Article  PubMed  Google Scholar 

  • Niederberger TD, Götz DK, McDonald IR, Ronimus RS, Morgan HW (2006) Ignisphaera aggregans gen. nov., sp. nov., a novel hyperthermophilic crenarchaeote isolated from hot springs in Rotorua and Tokaanu, New Zealand. Int J Syst Evol Microbiol 56:965–971

    Article  CAS  PubMed  Google Scholar 

  • Nußer E, Hartmann E, Allmeier H, König H, Paul G, Stetter KO (1988) A glycoprotein surface layer covers the pseudomurein sacculus of the extreme thermophile Methanothermus fervidus. In: Sleytr UB, Messner P, Pum D, Sàra M (eds) Crystalline bacterial cell surface layers. Springer, Berlin, pp 21–25

    Google Scholar 

  • Pavkov T, Egelseer EM, Tesarz M, Svergun DI, Sleytr UB, Keller W (2008) The structure and binding behavior of the bacterial cell surface layer protein SbsC. Structure 16:1226–1237

    Article  CAS  PubMed  Google Scholar 

  • Peters J, Nitsch M, Kühlmorgen B, Golbik R, Lupas A, Kellermann J, Engelhardt H, Pfander JP, Müller S, Goldie K, Engel A, Stetter KO, Baumeister W (1995) Tetrabrachion: a filamentous archaebacterial surface protein assembly of unusual structure and extreme stability. J Mol Biol 245:385–401

    Article  CAS  PubMed  Google Scholar 

  • Peters J, Baumeister W, Lupas A (1996) Hyperthermostable surface layer protein tetrabrachion from the archaebacterium Staphylothermus marinus: evidence for the presence of a right-handed coiled coil derived from the primary structure. J Mol Biol 257:1031–1041

    Article  CAS  PubMed  Google Scholar 

  • Phipp BM, Huber R, Baumeister W (1991) The cell envelope of the hyperthermophilic archaebacterium Pyrobaculum organotrophum consists of two regularly arrayed protein layers: three-dimensional structure of the outer layer. Mol Microbiol 5:253–265

    Article  Google Scholar 

  • Phipps BM, Engelhardt H, Huber R, Baumeister W (1990) Three-dimensional structure of the crystalline protein envelope layer of the hyperthermophilic archaebacterium Pyrobaculum islandicum. J Struct Biol 103:152–163

    Article  Google Scholar 

  • Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 93:6241–6246

    Article  CAS  PubMed  Google Scholar 

  • Prüschenk R, Baumeister W (1987) Three-dimensional structure of the surface protein of Sulfolobus solfataricus. Eur J Cell Biol 45:185–191

    Google Scholar 

  • Rachel R, Wyschkony I, Riehl S, Huber H (2002) The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 1:9–18

    Article  CAS  PubMed  Google Scholar 

  • Rieger G, Rachel R, Hermann R, Stetter KO (1995) Ultrastructure of the hyperthermophilic archaeon Pyrodictium abyssi. J Struct Biol 115:78–87

    Article  Google Scholar 

  • Sára M, Sleytr UB (2000) S-layer proteins. J Bacteriol 182:859–868

    Article  PubMed  Google Scholar 

  • Schleper C, Jurgens G, Januscheit M (2005) Genomic studies of uncultivated Archaea. Nat Rev Microbiol 3:479–488

    Article  CAS  PubMed  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    Article  CAS  PubMed  Google Scholar 

  • Sleytr UB, Sára M, Messner P, Pum D (1994) Two-dimensional protein crystals (S-layers): fundamentals and applications. J Cell Biochem 56:171–176

    Article  CAS  PubMed  Google Scholar 

  • Snel B, Huynen MA, Dutilh BE (2005) Genome trees and the nature of genome evolution. Annu Rev Microbiol 59:191–209

    Article  CAS  PubMed  Google Scholar 

  • Sumper M, Wieland FT (1995) Bacterial glycoproteins. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) Glycoproteins. Elsevier, Amsterdam, pp 455–473

    Chapter  Google Scholar 

  • Sumper M, Berg E, Mengele R, Strobel I (1990) Primary structure and glycosylation of the S-layer protein of Haloferax volcanii. J Bacteriol 172:7111–7118

    CAS  PubMed  Google Scholar 

  • Taylor KA, Deatherage JF, Amos LA (1982) Structure of the S-layer of Sulfolobus acidocaldarius. Nature 299:840–842

    Article  CAS  Google Scholar 

  • Veith A, Klingl A, Zolghadr B, Lauber K, Mentele R, Lottspeich F, Rachel R, Albers S-V, Kletzin A (2009) Acidianus, Sulfolobus and Metallosphaera surface layers: structure, composition and gene expression. Mol Microbiol 73(1):58–72

    Article  CAS  PubMed  Google Scholar 

  • Völkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic Archaeum. Appl Environ Microbiol 59:2918–2926

    PubMed  Google Scholar 

  • Waters E, Hohn MJ, Ahel I, Graham DE, Adams MB, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson TH, Sutton S, Simon M, Soll D, Stetter KO, Short JM, Noorderwier M (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100:12984–12988

    Article  Google Scholar 

  • Weiss LR (1973) Attachment of bacteria to sulphur in extreme environments. J Gen Microbiol 77:501–507

    CAS  Google Scholar 

  • Weiss LR (1974) Subunit cell wall of Sulfolobus acidocaldarius. J Bacteriol 118:275–284

    CAS  PubMed  Google Scholar 

  • Wildhaber I, Baumeister W (1987) The cell envelope of Thermoproteus tenax: three-dimensional structure of the surface layer and its role in shape maintenance. EMBO J 6:1475–1480

    CAS  PubMed  Google Scholar 

  • Wildhaber I, Santarius U, Baumeister W (1987) Three-dimensional structure of the surface protein of Desulfurococcus mobilis. J Bacteriol 169:5563–5568

    CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  Google Scholar 

  • Yao R, Macario AJ, Conway de Macario E (1994) An archaeal S-layer gene homolog with repetitive units. Biochim Biophys Acta 1219:697–700

    PubMed  Google Scholar 

  • Zillig W, Stetter KO, Schäfer W, Janékovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zentralbl Bakteriol Mikrobiol Hyg C 2:205–227

    CAS  Google Scholar 

  • Zillig W, Stetter KO, Prangishvilli D, Schäfer W, Wunderl S, Janékovic D, Holz I, Palm P (1982) Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur respiring Thermoproteales. Zentralbl Bakteriol Mikrobiol Hyg C 3:304–317

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (Bonn) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Rachel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rachel, R. (2010). Cell Envelopes of Crenarchaeota and Nanoarchaeota. In: König, H., Claus, H., Varma, A. (eds) Prokaryotic Cell Wall Compounds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05062-6_9

Download citation

Publish with us

Policies and ethics