Skip to main content

Bacterial Autolysins

  • Chapter
  • First Online:

Abstract

Bacteria produce multiple enzymes which are capable of hydrolyzing bonds in their own protective peptidoglycan sacculus. The peptidoglycan hydrolases (PGHs) that can provoke bacterial autolysis are named autolysins. This chapter focuses on a few well-characterized PGH systems from Gram-positive bacteria. Most PGHs have a modular structure comprising a catalytic domain and a cell wall binding domain. Since they are able to kill the cells that produce them, their expression and activity need to be tightly regulated. Multiple mechanisms of transcriptional or post-transcriptional regulation have been identified in different bacterial species, and are reviewed in this chapter. Although they play fundamental roles in bacterial physiology, most PGHs studied are dispensable for growth and viability, probably as a result of functional redundancy. PGHs are involved in all the cellular processes requiring peptidoglycan remodelling for bacterial growth and specific PGHs are involved in sporulation or competence in certain bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahn SJ, Burne RA (2007) Effects of oxygen on biofilm formation and the AtlA autolysin of Streptococcus mutans. J Bacteriol 189:6293–6302

    CAS  PubMed  Google Scholar 

  • Antignac A, Sieradzki K, Tomasz A (2007) Perturbation of cell wall synthesis suppresses autolysis in Staphylococcus aureus: evidence for coregulation of cell wall synthetic and hydrolytic enzymes. J Bacteriol 189:7573–7580

    CAS  PubMed  Google Scholar 

  • Baba T, Schneewind O (1998) Targeting of muralytic enzymes to the cell division site of Gram-positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus. EMBO J 17:4639–4646

    CAS  PubMed  Google Scholar 

  • Bateman A, Bycroft M (2000) The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol 299:1113–1119

    CAS  PubMed  Google Scholar 

  • Bayles KW (2003) Are the molecular strategies that control apoptosis conserved in bacteria? Trends Microbiol 11:306–311

    CAS  PubMed  Google Scholar 

  • Bera A, Herbert S, Jakob A, Vollmer W, Gotz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55:778–787

    CAS  PubMed  Google Scholar 

  • Bisicchia P, Noone D, Liolou E, Howell A, Quigley S, Jensen T, Jarmer H, Devine K (2007) The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol 65:180–200

    CAS  PubMed  Google Scholar 

  • Blackman SA, Smith TJ, Foster SJ (1998) The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology 144:73–82

    CAS  PubMed  Google Scholar 

  • Braun L, Dramsi S, Dehoux P, Bierne H, Lindahl G, Cossart P (1997) InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol Microbiol 25:285–294

    CAS  PubMed  Google Scholar 

  • Brunskill EW, Bayles KW (1996) Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus. J Bacteriol 178:611–618

    CAS  PubMed  Google Scholar 

  • Buist G, Kok J, Leenhouts KJ, Dabrowska M, Venema G, Haandrikman AJ (1995) Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J Bacteriol 177:1554–1563

    CAS  PubMed  Google Scholar 

  • Buist G, Venema G, Kok J (1998) Autolysis of Lactococcus lactis is influenced by proteolysis. J Bacteriol 180:5947–5953

    CAS  PubMed  Google Scholar 

  • Cabanes D, Dussurget O, Dehoux P, Cossart P (2004) Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol Microbiol 51:1601–1614

    CAS  PubMed  Google Scholar 

  • Calamita HG, Ehringer WD, Koch AL, Doyle RJ (2001) Evidence that the cell wall of Bacillus subtilis is protonated during respiration. Proc Natl Acad Sci USA 98:15260–15263

    CAS  PubMed  Google Scholar 

  • Carballido-Lopez R, Formstone A (2007) Shape determination in Bacillus subtilis. Curr Opin Microbiol 10:611–616

    CAS  PubMed  Google Scholar 

  • Carballido-Lopez R, Formstone A, Li Y, Ehrlich SD, Noirot P, Errington J (2006) Actin homolog MreBH governs cell morphogenesis by localization of the cell wall hydrolase LytE. Dev Cell 11:399–409

    CAS  PubMed  Google Scholar 

  • Carroll SA, Hain T, Technow U, Darji A, Pashalidis P, Joseph SW, Chakraborty T (2003) Identification and characterization of a peptidoglycan hydrolase, MurA, of Listeria monocytogenes, a muramidase needed for cell separation. J Bacteriol 185:6801–6808

    CAS  PubMed  Google Scholar 

  • Claverys JP, Martin B, Havarstein LS (2007) Competence-induced fratricide in streptococci. Mol Microbiol 64:1423–1433

    CAS  PubMed  Google Scholar 

  • Courtin P, Miranda G, Guillot A, Wessner F, Mezange C, Domakova E, Kulakauskas S, Chapot-Chartier M-P (2006) Peptidoglycan structure analysis of Lactococcus lactis reveals the presence of an l,d-carboxypeptidase involved in peptidoglycan maturation. J Bacteriol 188:5293–5298

    CAS  PubMed  Google Scholar 

  • Croux C, Garcia JL (1991) Sequence of the lyc gene encoding the autolytic lysozyme of Clostridium acetobutylicum ATCC824: comparison with other lytic enzymes. Gene 104:25–31

    CAS  PubMed  Google Scholar 

  • Croux C, Canard B, Goma G, Soucaille P (1992) Purification and characterization of an extracellular muramidase of Clostridium acetobutylicum ATCC 824 that acts on non-N-acetylated peptidoglycan. Appl Environ Microbiol 58:1075–1081

    CAS  PubMed  Google Scholar 

  • Dijkstra AJ, Keck W (1996) Peptidoglycan as a barrier to transenvelope transport. J Bacteriol 178:5555–5562

    CAS  PubMed  Google Scholar 

  • Dubrac S, Boneca IG, Poupel O, Msadek T (2007) New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol 189:8257–8269

    CAS  PubMed  Google Scholar 

  • Emirian A, Fromentin S, Eckert C, Chau F, Dubost L, Delepierre M, Gutmann L, Arthur M, Mesnage S (2009) Impact of peptidoglycan O-acetylation on autolytic activities of the Enterococcus faecalis N-acetylglucosaminidase AtlA and N-acetylmuramidase AtlB. FEBS Lett 583:3033–3038

    CAS  PubMed  Google Scholar 

  • Fedtke I, Mader D, Kohler T, Moll H, Nicholson G, Biswas R, Henseler K, Götz F, Zähringer U, Peschel A (2007) A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol 65:1078–1091

    CAS  PubMed  Google Scholar 

  • Fernandez-Tornero C, Lopez R, Garcia E, Gimenez-Gallego G, Romero A (2001) A novel solenoid fold in the cell wall anchoring domain of the pneumococcal virulence factor LytA. Nat Struct Biol 8:1020–1024

    CAS  PubMed  Google Scholar 

  • Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz H-R, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288

    CAS  PubMed  Google Scholar 

  • Foster S (1991) Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. J Gen Microbiol 137:1987–1998

    CAS  PubMed  Google Scholar 

  • Fournier B, Hooper DC (2000) A new two-component regulatory system involved in adhesion, autolysis, and extracellular proteolytic activity of Staphylococcus aureus. J Bacteriol 182:3955–3964

    CAS  PubMed  Google Scholar 

  • Fukushima T, Afkham A, Kurosawa S, Tanabe T, Yamamoto H, Sekiguchi J (2006) A new d,l-endopeptidase gene product, YojL (renamed CwlS), plays a role in cell separation with LytE and LytF in Bacillus subtilis. J Bacteriol 188:5541–5550

    CAS  PubMed  Google Scholar 

  • Garcia E, Garcia JL, Ronda C, Garcia P, Lopez R (1985) Cloning and expression of the pneumococcal autolysin gene in Escherichia coli. Mol Gen Genet 201:225–230

    CAS  PubMed  Google Scholar 

  • Garcia E, Garcia JL, Garcia P, Arraras A, Sanchez-Puelles JM, Lopez R (1988) Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Proc Natl Acad Sci USA 85:914–918

    CAS  PubMed  Google Scholar 

  • Garcia P, Gonzalez MP, Garcia E, Lopez R, Garcia JL (1999a) LytB, a novel pneumococcal murein hydrolase essential for cell separation. Mol Microbiol 31:1275–1281

    CAS  PubMed  Google Scholar 

  • Garcia P, Paz Gonzalez M, Garcia E, Garcia JL, Lopez R (1999b) The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains. Mol Microbiol 33:128–138

    CAS  PubMed  Google Scholar 

  • Glauner B, Holtje JV, Schwarz U (1988) The composition of the murein of Escherichia coli. J Biol Chem 263:10088–10095

    CAS  PubMed  Google Scholar 

  • Groicher KH, Firek BA, Fujimoto DF, Bayles KW (2000) The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J Bacteriol 182:1794–1801

    CAS  PubMed  Google Scholar 

  • Guiral S, Mitchell TJ, Martin B, Claverys JP (2005) Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc Natl Acad Sci USA 102:8710–8715

    CAS  PubMed  Google Scholar 

  • Herbold DR, Glaser L (1975) Bacillus subtilis N-acetylmuramic acid l-alanine amidase. J Biol Chem 250:1676–1682

    CAS  PubMed  Google Scholar 

  • Horsburgh GJ, Atrih A, Williamson MP, Foster SJ (2003) LytG of Bacillus subtilis is a novel peptidoglycan hydrolase: the major active glucosaminidase. Biochemistry 42:257–264

    CAS  PubMed  Google Scholar 

  • Howell A, Dubrac S, Andersen KK, Noone D, Fert J, Msadek T, Devine K (2003) Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach. Mol Microbiol 49:1639–1655

    CAS  PubMed  Google Scholar 

  • Huard C, Miranda G, Wessner F, Bolotin A, Hansen J, Foster SJ, Chapot-Chartier M-P (2003) Characterization of AcmB, an N-acetylglucosaminidase autolysin from Lactococcus lactis. Microbiology 149:695–705

    CAS  PubMed  Google Scholar 

  • Huard C, Miranda G, Redko Y, Wessner F, Foster SJ, Chapot-Chartier MP (2004) Analysis of the peptidoglycan hydrolase complement of Lactococcus lactis: identification of a third N-Acetylglucosaminidase, AcmC. Appl Environ Microbiol 70:3493–3499

    CAS  PubMed  Google Scholar 

  • Husson-Kao C, Mengaud J, Cesselin B, van Sinderen D, Benbadis L, Chapot-Chartier MP (2000) The streptococcus thermophilus autolytic phenotype results from a leaky prophage. Appl Environ Microbiol 66:558–565

    CAS  PubMed  Google Scholar 

  • Ishikawa S, Yamane K, Sekiguchi J (1998) Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlJ) which affects germination of Bacillus subtilis spores. J Bacteriol 180:1375–1380

    CAS  PubMed  Google Scholar 

  • Jolliffe LK, Doyle RJ, Streips UN (1980) Extracellular proteases modify cell wall turnover in Bacillus subtilis. J Bacteriol 141:1199–1208

    CAS  PubMed  Google Scholar 

  • Jonquieres R, Bierne H, Fiedler F, Gounon P, Cossart P (1999) Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria. Mol Microbiol 34:902–914

    CAS  PubMed  Google Scholar 

  • Kajimura J, Fujiwara T, Yamada S, Suzawa Y, Nishida T, Oyamada Y, Hayashi I, Yamagishi J-I, Komatsuzawa H, Sugai M (2005) Identification and molecular characterization of an N-acetylmuramyl-l-alanine amidase Sle1 involved in cell separation of Staphylococcus aureus. Mol Microbiol 58:1087–1101

    CAS  PubMed  Google Scholar 

  • Kariyama R, Shockman GD (1992) Extracellular and cellular distribution of muramidase-2 and muramidase-1 of Enterococcus hirae ATCC 9790. J Bacteriol 174:3236–3241

    CAS  PubMed  Google Scholar 

  • Kawamura T, Shockman GD (1983) Purification and some properties of the endogenous, autolytic N-acetylmuramoylhydrolase of Streptococcus faecium, a bacterial glycoenzyme. J Biol Chem 258:9514–9521

    CAS  PubMed  Google Scholar 

  • Keep NH, Ward JM, Cohen-Gonsaud M, Henderson B (2006) Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol 14:271–276

    CAS  PubMed  Google Scholar 

  • Kemper MA, Urrutia MM, Beveridge TJ, Koch AL, Doyle RJ (1993) Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis. J Bacteriol 175:5690–5696

    CAS  PubMed  Google Scholar 

  • Koch AL, Doyle RJ (1985) Inside-to-outside growth and turnover of the wall of Gram-positive rods. J Theor Biol 117:137–157

    CAS  PubMed  Google Scholar 

  • Kullik I, Jenni R, Berger-Bachi B (1998) Sequence of the putative alanine racemase operon in Staphylococcus aureus: insertional interruption of this operon reduces d-alanine substitution of lipoteichoic acid and autolysis. Gene 219:9–17

    CAS  PubMed  Google Scholar 

  • Kuroda A, Sekiguchi J (1991) Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J Bacteriol 173:7304–7312

    CAS  PubMed  Google Scholar 

  • Kuroda A, Sekiguchi J (1992) Characterization of the Bacillus subtilis CwbA protein which stimulates cell wall lytic amidases. FEMS Microbiol Lett 74:109–113

    CAS  PubMed  Google Scholar 

  • Kuroda A, Imazeki M, Sekiguchi J (1991) Purification and characterization of a cell wall hydrolase encoded by the cwlA gene of Bacillus subtilis. FEMS Microbiol Lett 65:9–13

    CAS  PubMed  Google Scholar 

  • Kuroda A, Rashid MH, Sekiguchi J (1992) Molecular cloning and sequencing of the upstream region of the major Bacillus subtilis autolysin gene: a modifier protein exhibiting sequence homology to the major autolysin and the spoIID product. J Gen Microbiol 138(Pt 6):1067–1076

    CAS  PubMed  Google Scholar 

  • Kuroda A, Asami Y, Sekiguchi J (1993) Molecular cloning of a sporulation-specific cell wall hydrolase gene of Bacillus subtilis. J Bacteriol 175:6260–6268

    CAS  PubMed  Google Scholar 

  • Lazarevic V, Margot P, Soldo B, Karamata D (1992) Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-l-alanine amidase and its modifier. J Gen Microbiol 138:1949–1961

    CAS  PubMed  Google Scholar 

  • Leclerc D, Asselin A (1989) Detection of bacterial cell wall hydrolases after denaturing polyacrylamide gel electrophoresis. Can J Microbiol 35:749–753

    CAS  PubMed  Google Scholar 

  • Lenz LL, Mohammadi S, Geissler A, Portnoy DA (2003) SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci USA 100:12432–12437

    CAS  PubMed  Google Scholar 

  • Lepeuple AS, Van Gemert E, Chapot-Chartier MP (1998) Analysis of the bacteriolytic enzymes of the autolytic Lactococcus lactis subsp. cremoris strain AM2 by renaturing polyacrylamide gel electrophoresis: identification of a prophage-encoded enzyme. Appl Environ Microbiol 64:4142–4148

    CAS  PubMed  Google Scholar 

  • Liang X, Zheng L, Landwehr C, Lunsford D, Holmes D, Ji Y (2005) Global regulation of gene expression by ArlRS, a two-component signal transduction regulatory system of Staphylococcus aureus. J Bacteriol 187:5486–5492

    CAS  PubMed  Google Scholar 

  • Lleo MM, Fontana R, Solioz M (1995) Identification of a gene (arpU) controlling muramidase-2 export in Enterococcus hirae. J Bacteriol 177:5912–5917

    CAS  PubMed  Google Scholar 

  • Lopez R, Garcia E (2004) Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 28:553–580

    CAS  PubMed  Google Scholar 

  • Lopez R, Garcia JL, Garcia E, Ronda C, Garcia P (1992) Structural analysis and biological significance of the cell wall lytic enzymes of Streptococcus pneumoniae and its bacteriophage. FEMS Microbiol Lett 79:439–447

    CAS  PubMed  Google Scholar 

  • Lu JZ, Fujiwara T, Komatsuzawa H, Sugai M, Sakon J (2006) Cell wall-targeting domain of glycylglycine endopeptidase distinguishes among peptidoglycan cross-bridges. J Biol Chem 281:549–558

    CAS  PubMed  Google Scholar 

  • Margot P, Karamata D (1992) Identification of the structural genes for N-acetylmuramoyl-l-alanine amidase and its modifier in Bacillus subtilis 168: inactivation of these genes by insertional mutagenesis has no effect on growth or cell separation. Mol Gen Genet 232:359–366

    CAS  PubMed  Google Scholar 

  • Margot P, Mauel C, Karamata D (1994) The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol Microbiol 12:535–545

    CAS  PubMed  Google Scholar 

  • Margot P, Wahlen M, Gholamhoseinian A, Piggot P, Karamata D, Gholamhuseinian A (1998) The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase. J Bacteriol 180:749–752

    CAS  PubMed  Google Scholar 

  • Margot P, Pagni M, Karamata D (1999) Bacillus subtilis 168 gene lytF encodes a gamma-d-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, sigmaD. Microbiology 145:57–65

    CAS  PubMed  Google Scholar 

  • Meyrand M, Boughammoura A, Courtin P, Mezange C, Guillot A, Chapot-Chartier M-P (2007) Peptidoglycan N-acetylglucosamine deacetylation decreases autolysis in Lactococcus lactis. Microbiology 153:3275–3285

    CAS  PubMed  Google Scholar 

  • Milohanic E, Jonquieres R, Cossart P, Berche P, Gaillard JL (2001) The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol Microbiol 39:1212–1224

    CAS  PubMed  Google Scholar 

  • Mishima M, Shida T, Yabuki K, Kato K, Sekiguchi J, Kojima C (2005) Solution structure of the peptidoglycan binding domain of Bacillus subtilis cell wall lytic enzyme CwlC: characterization of the sporulation-related repeats by NMR. Biochemistry 44:10153–10163

    CAS  PubMed  Google Scholar 

  • Moriyama R, Hattori A, Miyata S, Kudoh S, Makino S (1996) A gene (sleB) encoding a spore cortex-lytic enzyme from Bacillus subtilis and response of the enzyme to l-alanine-mediated germination. J Bacteriol 178:6059–6063

    CAS  PubMed  Google Scholar 

  • Mukamolova GV, Murzin AG, Salina EG, Kell DB, Kaprelyants AS, Young M (2006) Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol 59:84–98

    CAS  PubMed  Google Scholar 

  • Ng WL, Kazmierczak KM, Winkler ME (2004) Defective cell wall synthesis in Streptococcus pneumoniae R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator. Mol Microbiol 53:1161–1175

    CAS  PubMed  Google Scholar 

  • Nugroho FA, Yamamoto H, Kobayashi Y, Sekiguchi J (1999) Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis. J Bacteriol 181:6230–6237

    CAS  PubMed  Google Scholar 

  • Ohnishi R, Ishikawa S, Sekiguchi J (1999) Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. J Bacteriol 181:3178–3184

    CAS  PubMed  Google Scholar 

  • Oshida T, Sugai M, Komatsuzawa H, Hong YM, Suginaka H, Tomasz A (1995) A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-l-alanine amidase domain and an endo-beta-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci USA 92:285–289

    CAS  PubMed  Google Scholar 

  • Pagliero E, Dideberg O, Vernet T, Di Guilmi AM (2005) The PECACE domain: a new family of enzymes with potential peptidoglycan cleavage activity in Gram-positive bacteria. BMC Genomics 6:19

    PubMed  Google Scholar 

  • Palumbo E, Deghorain M, Cocconcelli PS, Kleerebezem M, Geyer A, Hartung T, Morath S, Hols P (2006) d-alanyl ester depletion of teichoic acids in Lactobacillus plantarum results in a major modification of lipoteichoic acid composition and cell wall perforations at the septum mediated by the Acm2 autolysin. J Bacteriol 188:3709–3715

    CAS  PubMed  Google Scholar 

  • Perea Velez M, Verhoeven TLA, Draing C, Von Aulock S, Pfitzenmaier M, Geyer A, Lambrichts I, Grangette C, Pot B, Vanderleyden J, De Keersmaecker SCJ (2007) Functional analysis of d-alanylation of lipoteichoic acid in the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 73:3595–3604

    PubMed  Google Scholar 

  • Peschel A, Vuong C, Otto M, Gotz F (2000) The d-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob Agents Chemother 44:2845–2847

    CAS  PubMed  Google Scholar 

  • Pfeffer JM, Strating H, Weadge JT, Clarke AJ (2006) Peptidoglycan O acetylation and autolysin profile of Enterococcus faecalis in the viable but nonculturable state. J Bacteriol 188:902–908

    CAS  PubMed  Google Scholar 

  • Pilgrim S, Kolb-Maurer A, Gentschev I, Goebel W, Kuhn M (2003) Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infect Immun 71:3473–3484

    CAS  PubMed  Google Scholar 

  • Poquet I, Saint V, Seznec E, Simoes N, Bolotin A, Gruss A (2000) HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35:1042–1051

    CAS  PubMed  Google Scholar 

  • Ramadurai L, Jayaswal RK (1997) Molecular cloning, sequencing, and expression of lytM, a unique autolytic gene of Staphylococcus aureus. J Bacteriol 179:3625–3631

    CAS  PubMed  Google Scholar 

  • Ramadurai L, Lockwood KJ, Nadakavukaren MJ, Jayaswal RK (1999) Characterization of a chromosomally encoded glycylglycine endopeptidase of Staphylococcus aureus. Microbiology 145:801–808

    CAS  PubMed  Google Scholar 

  • Rathsam C, Jacques NA (1998) Role of C-terminal domains in surface attachment of the fructosyltransferase of Streptococcus salivarius ATCC 25975. J Bacteriol 180:6400–6403

    CAS  PubMed  Google Scholar 

  • Redko Y, Courtin P, Mezange C, Huard C, Chapot-Chartier MP (2007) Lactococcus lactis gene yjgB encodes a gamma-d-glutaminyl-l-lysyl-endopeptidase which hydrolyzes peptidoglycan. Appl Environ Microbiol 73:5825–5831

    CAS  PubMed  Google Scholar 

  • Rice KC, Bayles KW (2003) Death’s toolbox: examining the molecular components of bacterial programmed cell death. Mol Microbiol 50:729–738

    CAS  PubMed  Google Scholar 

  • Rice KC, Firek BA, Nelson JB, Yang SJ, Patton TG, Bayles KW (2003) The Staphylococcus aureus cidAB operon: evaluation of its role in regulation of murein hydrolase activity and penicillin tolerance. J Bacteriol 185:2635–2643

    CAS  PubMed  Google Scholar 

  • Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW (2007) The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci USA 104:8113–8118

    CAS  PubMed  Google Scholar 

  • Ruhland GJ, Hellwig M, Wanner G, Fiedler F (1993) Cell-surface location of Listeria-specific protein p60-detection of Listeria cells by indirect immunofluorescence. J Gen Microbiol 139:609–616

    CAS  PubMed  Google Scholar 

  • Salzberg LI, Helmann JD (2007) An antibiotic-inducible cell wall-associated protein that protects Bacillus subtilis from autolysis. J Bacteriol 189:4671–4680

    CAS  PubMed  Google Scholar 

  • Schubert K, Bichlmaier AM, Mager E, Wolff K, Ruhland G, Fiedler F (2000) P45, an extracellular 45 kDa protein of Listeria monocytogenes with similarity to protein p60 and exhibiting peptidoglycan lytic activity. Arch Microbiol 173:21–28

    CAS  PubMed  Google Scholar 

  • Sekiguchi J, Akeo K, Yamamoto H, Khasanov FK, Alonso JC, Kuroda A (1995) Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. J Bacteriol 177:5582–5589

    CAS  PubMed  Google Scholar 

  • Serizawa M, Kodama K, Yamamoto H, Kobayashi K, Ogasawara N, Sekiguchi J (2005) Functional analysis of the YvrGHb two-component system of Bacillus subtilis: identification of the regulated genes by DNA microarray and northern blot analyses. Biosci Biotechnol Biochem 69:2155–2169

    CAS  PubMed  Google Scholar 

  • Shockman GD (1992) The autolytic (‘suicidase’) system of Enterococcus hirae: from lysine depletion autolysis to biochemical and molecular studies of the two muramidases of Enterococcus hirae ATCC 9790. FEMS Microbiol Lett 79:261–267

    CAS  PubMed  Google Scholar 

  • Shockman GD, Höltje JV (1994) Microbial peptidoglycan (murein) hydrolases. In: Guysen J-M, Hackenbeck R (eds) New comprehensive biochemistry, vol 27. Bacterial cell wall. Elsevier, Amsterdam, pp 131–167

    Google Scholar 

  • Smith TJ, Blackman SA, Foster SJ (2000) Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146:249–262

    CAS  PubMed  Google Scholar 

  • Sobral RG, Jones AE, Des Etages SG, Dougherty TJ, Peitzsch RM, Gaasterland T, Ludovice AM, de Lencastre H, Tomasz A (2007) Extensive and genome-wide changes in the transcription profile of Staphylococcus aureus induced by modulating the transcription of the cell wall synthesis gene murF. J Bacteriol 189:2376–2391

    CAS  PubMed  Google Scholar 

  • Stapleton MR, Horsburgh MJ, Hayhurst EJ, Wright L, Jonsson I-M, Tarkowski A, Kokai-Kun JF, Mond JJ, Foster SJ (2007) Characterization of IsaA and SceD, two putative lytic transglycosylases of Staphylococcus aureus. J Bacteriol 189:7316–7325

    CAS  PubMed  Google Scholar 

  • Steen A, Buist G, Leenhouts KJ, El Khattabi M, Grijpstra F, Zomer AL, Venema G, Kuipers OP, Kok J (2003) Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem 278:23874–23881

    CAS  PubMed  Google Scholar 

  • Steen A, Palumbo E, Deghorain M, Cocconcelli PS, Delcour J, Kuipers OP, Kok J, Buist G, Hols P (2005) Autolysis of Lactococcus lactis is increased upon d-alanine depletion of peptidoglycan and lipoteichoic acids. J Bacteriol 187:114–124

    CAS  PubMed  Google Scholar 

  • Sugai M, Komatsuzawa H, Akiyama T, Hong Y-M, Oshida T, Miyake Y, Yamaguchi T, Suginawa H (1995) Identification of endo-beta-N-acetylglucosaminidase and N-acetylmuramyl-l-alanine amidase as cluster-dispersing enzymes in Staphylococcus aureus. J Bacteriol 177:1491–1496

    CAS  PubMed  Google Scholar 

  • Sugai M, Fujiwara T, Komatsuzawa H, Suginaka H (1998) Identification and molecular characterization of a gene homologous to epr (endopeptidase resistance gene) in Staphylococcus aureus. Gene 224:67–75

    CAS  PubMed  Google Scholar 

  • Takahashi J, Komatsuzawa H, Yamada S, Nishida T, Labinschinski H, Fujiwara Y, Ohara M, Yamagishi J-I, Sugai M (2002) Molecular characterization of an atl null mutant of Staphylococcus aureus. Microbiol Immunol 46:601–612

    CAS  PubMed  Google Scholar 

  • Tomasz A, Westphal M (1971) Abnormal autolytic enzyme in a pneumococus with altered teichoic acid composition. Proc Natl Acad Sci USA 68:2627–2630

    CAS  PubMed  Google Scholar 

  • Veiga P, Bulbarela-Sampieri C, Furlan S, Maisons A, Chapot-Chartier M-P, Erkelenz M, Mervelet P, Noirot P, Frees D, Kuipers O, Kok J, Gruss A, Buist G, Kulakauskas S (2007) SpxB regulates O-acetylation-dependent resistance of Lactococcus lactis peptidoglycan to hydrolysis. J Biol Chem 282:19342–19354

    CAS  PubMed  Google Scholar 

  • Vollmer W, Bertsche U (2008) Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta 1778:1714–1734

    CAS  PubMed  Google Scholar 

  • Vollmer W, Tomasz A (2000) The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. J Biol Chem 275:20496–20501

    CAS  PubMed  Google Scholar 

  • Vollmer W, von Rechenberg M, Holtje JV (1999) Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli. J Biol Chem 274:6726–6734

    CAS  PubMed  Google Scholar 

  • Wang L, Lin M (2007) Identification of IspC, an 86-kilodalton protein target of humoral immune response to infection with Listeria monocytogenes serotype 4b, as a novel surface autolysin. J Bacteriol 189:2046–2054

    CAS  PubMed  Google Scholar 

  • Wecke J, Madela K, Fischer W (1997) The absence of d-alanine from lipoteichoic acid and wall teichoic acid alters surface charge, enhances autolysis and increases susceptibility to methicillin in Bacillus subtilis. Microbiology 143:2953–2960

    CAS  Google Scholar 

  • Whisstock JC, Lesk AM (1999) SH3 domains in prokaryotes. Trends Biochem Sci 24:132–133

    CAS  PubMed  Google Scholar 

  • Wuenscher MD, Kohler S, Bubert A, Gerike U, Goebel W (1993) The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol 175:3491–3501

    CAS  PubMed  Google Scholar 

  • Yamada S, Sugai M, Komatsuzawa H, Nakashima S, Oshida T, Matsumoto A, Suginaka H (1996) An autolysin ring associated with cell separation of Staphylococcus aureus. J Bacteriol 178:1565–1571

    CAS  PubMed  Google Scholar 

  • Yamaguchi H, Furuhata K, Fukushima T, Yamamoto H, Sekiguchi J (2004) Characterization of a new Bacillus subtilis peptidoglycan hydrolase gene, yvcE (named cwlO), and the enzymatic properties of its encoded protein. J Biosci Bioeng 98:174–181

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Kurosawa S, Sekiguchi J (2003) Localization of the vegetative cell wall hydrolases LytC, LytE, and LytF on the Bacillus subtilis cell surface and stability of these enzymes to cell wall-bound or extracellular proteases. J Bacteriol 185:6666–6677

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank M. Yvon and V. Monnet (INRA, UR477 Biochimie Bactérienne, Jouy-en-Josas, France) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Pierre Chapot-Chartier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chapot-Chartier, MP. (2010). Bacterial Autolysins. In: König, H., Claus, H., Varma, A. (eds) Prokaryotic Cell Wall Compounds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05062-6_13

Download citation

Publish with us

Policies and ethics